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Abstract — Effective bed management is essential for reducing hospital expenses,
improving operational efficiency, and enhancing patient care. This study introduces a
predictive framework for ICU length of stay (LOS) at the time of admission, utilizing
electronic health records (EHR). Our research applies supervised machine learning
classification models to estimate ICU patients’ LOS within hospital clinical information
systems (CIS). Notably, this work represents the first known application of explainable
artificial intelligence (xAl) to real-world hospital stay data for interpretable machine
learning predictions. We assessed predictive classification models using various
performance metrics, including Accuracy, AUC, Sensitivity, Specificity, F1-score,
Precision, Recall, and others, to classify ICU stays as short or long upon admission.
XGBoost demonstrated a 98% AUC in predicting LOS categories. This study highlights
how hospitals and ICUs can integrate machine learning to forecast patient stays at
admission. Additionally, our findings enhance clinical information systems by
incorporating xAl to ensure robust and interpretable LOS prediction models.

Index Terms —Healthcare decision support systems, explainable artificial intelligence,
machine learning, XGBOOST.

I INTRODUCTION

The duration of hospitalization is widely recognized as a key measure of hospital efficiency [1]. It
has a profound impact on resource management and healthcare costs [2]. According to a report by the
Australian National Health Performance Authority, reducing hospital stays enhances efficiency by making
beds available more quickly for new admissions. However, excessively short stays can compromise care
quality and lead to negative health outcomes. Conversely, extended hospitalizations—often due to medical
complications—increase the risk of adverse events. Additionally, delays in healthcare coordination,
independent of a patient’s medical condition, can unnecessarily prolong hospital stays. The report also
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emphasizes that longer stays may stem from inefficiencies in transitioning patients to alternative care
settings, such as rehabilitation centers, community care, or aged care facilities [3].

Efficient ICU bed management is critical in addressing challenges such as overcrowding, infection
risks, increased mortality rates, and medical complications. To mitigate these risks while optimizing
resource utilization, reducing ICU stays without sacrificing care quality is essential, particularly during
health crises such as pandemics [4]. This not only lowers hospital expenses but also improves patient
outcomes. Ensuring adequate bed availability and prompt patient transfers plays a crucial role in
maintaining healthcare quality. Effective ICU resource allocation is, therefore, fundamental to enhancing
healthcare service delivery [5], [6], [7], [8]. Al-driven prediction models using electronic health records
(EHRs) offer better accuracy in estimating ICU length of stay (LOS) compared to traditional scoring
systems like APACHE, SAPS, and SOFA. Machine learning models, such as XGBoost, Random Forest,
and Artificial Neural Networks, have shown promising results in predicting LOS. However, challenges
remain, including data limitations, model interpretability, and the need for explainable Al approaches.

Several studies have explored different AI models for LOS prediction. Ma et al. used extreme
learning machines (ELMs) for personalized ICU stay predictions. Su et al. found that Random Forest
outperformed SOFA in predicting LOS for sepsis patients. Staziaki et al. showed that combining clinical
and imaging data improved accuracy. Alghatani et al. tested various classifiers, with Random Forest and
XGBoost performing best. Bayesian Networks also achieved high accuracy but lacked detailed parameter
insights. Despite advancements, further research is needed to refine Al-driven ICU LOS prediction
models, ensuring transparency, adaptability, and broader clinical application.

I1. LITERATURE SURVEY

Machine learning ml has revolutionized the healthcare sector particularly in forecasting hospital
length of stay los predicting los accurately is essential for optimizing hospital resources enhancing patient
care and controlling costs traditional methods including logistic regression models and clinical scoring
techniques such as apache saps and sofa have been utilized in this domain however these models rely on
predefined assumptions and fail to capture complex non-linear patterns within patient
data resulting in suboptimal predictive accuracy similarly conventional regression techniques like cox
proportional hazards models and survival analysis have been explored for los prediction yet they exhibit
challenges in handling large datasets and diverse patient demographics

The emergence of machine learning algorithms has significantly enhanced the accuracy of LOS
forecasting by leveraging electronic health records (EHRs). Among supervised learning models, Decision
Trees (DT) and Random Forests (RF) stand out for their interpretability and ability to rank key predictive
features. However, these models are sometimes prone to overfitting, which limits their generalizability.
Support Vector Machines (SVMs) have been effective in handling high-dimensional healthcare datasets,
enabling the identification of intricate patterns in patient records. Additionally, boosting techniques such
as XGBoost and Gradient Boosting Machines (GBM) have demonstrated superior performance by
iteratively refining model predictions and managing missing data effectively. Deep learning techniques
have further improved LOS estimations. Artificial Neural Networks (ANNs) have the capability to capture
complex dependencies in structured and unstructured hospital data, while Recurrent Neural Networks
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(RNNs) and Long Short-Term Memory (LSTM) networks are particularly effective in analyzing
sequential patient data. Furthermore, Convolutional Neural Networks (CNNs) have been integrated into

predictive models to incorporate imaging data, adding another dimension to LOS prediction.

Despite these improvements, several challenges continue to affect LOS prediction models.
Imbalanced data distributions pose a significant issue, as shorter hospital stays are far more common than
extended stays, leading to potential bias in model outcomes. Addressing this requires the use of
oversampling methods and synthetic data augmentation techniques to ensure a balanced dataset for
training. Generalizability is another major concern, as models trained on data from specific healthcare
institutions may not perform effectively when applied to other hospitals with different patient populations.
Additionally, there is often a trade-off between accuracy and explainability, where highly complex deep
learning models provide high accuracy but lack transparency. Moreover, the integration of ML models
into Clinical Decision Support Systems (CDSS) remains an underexplored area, preventing real-time
implementation of predictive analytics in hospital workflows.

This study aims to overcome these challenges by developing an explainable ML framework for
LOS prediction. The proposed approach utilizes real-world hospital datasets to create an effective and
applicable model. Furthermore, SHAP-based interpretability methods are employed to provide insights
into the model’s decision-making process, ensuring that predictions remain transparent for healthcare
professionals. Multiple ML techniques are evaluated to determine the most efficient approach, while
strategies for seamless integration into hospital systems are explored. By balancing predictive performance
with explainability, this study contributes to the development of Al-driven solutions that
support informed decision-making in hospital management.

III. METHODOLOGY

This study presents a framework designed to predict the duration of hospital stays for patients
specifically from their ICU admission to discharge machine learning techniques are utilized to estimate
the length of stay 10S of inpatients based on real-world hospital data this process is crucial for evaluating
and validating predictive models using actual hospitalization records in this section each phase of the
proposed predictive framework fig 1 is explained in depth the following section provides a detailed
discussion of every stage within the frame work.

Data description and features extraction

This study retrospectively analyzed electronic health record (EHR) data from Al-Ain Hospital,
covering ICU admissions from December 31, 2017, to April 3, 2020. A de-identified dataset of 1,045
patients was used, ensuring compliance with UAE and Australia’s data protection regulations. Ethical
approval was obtained from Al-Ain Hospital, UAE University, and Western Sydney University. The study
included all ICU hospitalizations, excluding cases with significant missing data or non-surviving patients.
Disease classification followed the ICD-10 system, and 475 features were extracted from the hospital’s
medical records. Two experimental settings were used: one with all 1,045 patients and another dividing
patients into three subsets. The inclusion criteria were developed collaboratively by medical and computer
science experts.Participants engaged with the WUDI! app over six months, during which they earned
rewards and incentives based on their engagement with physical activity, sleep, and dietary tracking.
Parental involvement was also incorporated to track growth metrics and enhance adherence.
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Fig 1: Predicting Hospital Stay Length Architecture

2. Data Pre-Processing And Discretisation

This study retrospectively analyzed electronic health record (EHR) data from Al-Ain Hospital,
covering ICU admissions from December 31, 2017, to April 3, 2020. A de-identified dataset of 1,045
patients was used, ensuring compliance with UAE and Australia’s data protection regulations. Ethical
approval was obtained from Al-Ain Hospital, UAE University, and Western Sydney University. The study
included all ICU hospitalizations, excluding cases with significant missing data or non-surviving patients.
Disease classification followed the ICD-10 system, and 475 features were extracted from the hospital’s
medical records. Two experimental settings were used: one with all 1,045 patients and another dividing
patients into three subsets. The inclusion criteria were developed collaboratively by medical and computer

science experts.

TABLE 1. Hyperparameters of the predictive models.

Experiment setup

Parameters Description All - G+C+LAM G c L M
Logistic Regression (LR)
C=1 To control penalty strength (Inverse of regularization strength), and it must be a positive value. 1000 C=1 C=0.001 C=0.01 C=1
Solver = [liblinear, newton-cg] for regularization (penalty) and optimization problem. N/A liblinear newton-cg liblinear liblinear
Multi-layer Perceptron (MLP)
hidden_layer_sizes Describes the ith element represents the number of neurons in the ith hidden layer. 10 50 50 N/A 10
activation Refer to activation function for the hidden layer. logistic N/A logistic logistic tanh
learning_rate Learning rate schedule for weight updates. 0.01 0.01 0.01 0.01 0.01
Random Forest (RF)
n_estimators Describes the number of trees in the forest. 50 250 5 250 50
max_depth Describes the maximum depth of the tree. None 8 8 8
max_features Describes the number of features to consider when looking for the best split. None sqrt log2 log2 sqrt
Gradient Boosting (GB)
n_estimators Describes the number of boosting stages to perform. 500 50 5 50 500
max_depth Refers to the maximum depth limits the number of nodes in the tree. 1 9 1 5 N/A
learning_rate Learning rate shrinks the contribution of each tree 0.01 0.01 0.01 0.01 0.01
eXtreme Gradient Boosting (XGBoost)

n_estimators Describes the number of gradients boosted trees ( equivalent to the number of boosting rounds) 100 5 5 5 250
max_depth Describes the maximum tree depth for base learners None 3 1 5 3
learning_rate Describes the Boosting learning rate None 1 0.01 0.1 C=1

3. Models Selection And Performance Evaluation

This section examines the machine learning models employed to evaluate the predictive LOS
framework for ICU hospitalizations based on real hospital datasets. The process involved model
implementation, optimization, and performance assessment, utilizing Python along with the Sklearn

library.
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4. Model Training And Evaluation

e Algorithms Used: XGBoost, Random Forest (RF), Gradient Boosting Machines (GBM), Logistic
Regression (LR), and Multi-Layer Perceptron (MLP).

e Hyperparameter Tuning: GridSearch with 5-fold cross-validation for optimization.

e Dataset: Electronic medical records from Al-Ain Hospital.

e Evaluation Metrics: Accuracy, Precision, Sensitivity, Specificity, F1-Score, AUC, PR-AUC.

e Cross-Validation: Ensured model robustness and generalization.

e Confidence Intervals: Used for performance validation.

e Feature Selection: Dataset subsets (All features, G, C, L, and M) tested for impact on predictions.

5. Ethical Consideration

The study ensures ethical compliance through approvals, patient data anonymization, and bias
mitigation. It emphasizes transparency, responsible Al use, and human oversight in medical decision-
making.

IV. RESULTS AND DISCUSSIONS

The study evaluated predictive models for ICU length of stay (LOS) using real hospital data.
XGBoost demonstrated the highest predictive accuracy, outperforming other models like Random Forest,
Gradient Boosting, MLP, and Logistic Regression. Cross-validation reduced bias and variance, ensuring
robust model performance. The use of explainable Al (XAI) techniques, such as SHAP values, helped
interpret predictions, making them transparent for healthcare professionals. The findings support Al-
driven decision support systems for improving hospital resource management and patient care.
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V. CONCLUSION AND FUTURE WORK

This study introduced a predictive ICU framework utilizing real hospital data to estimate patients'
length of stay at ICU admission. This practical model carries significant implications for ICU bed
management and resource optimization, delivering the expected predictive outcomes through its structured
three-stage LOS prediction process. Among the different models evaluated, XGBoost demonstrated the
highest performance due to its capacity to generate explainable results, making it accessible to non-Al
experts. Importantly, this study is the first to propose an Al-driven explainable framework for forecasting
ICU patients' length of stay using a data-driven methodology. The proposed framework is adaptable,
applicable to various diseases and medical conditions, enhancing its value for clinical research and
electronic health record applications. Additionally, it has the potential to advance predictive tasks such as
identifying high-risk patients for mortality. Future research will prioritize incorporating user-centered
clinical predictive systems into routine hospital operations while conducting an in-depth analysis of
explainable Al applications in hospital, emergency department, and ICU environments. This effort will
support the practical implementation of ML-xAI models and contribute to standardizing their integration
into electronic health records and broader healthcare systems.
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