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Abstract: The exponential growth of textual data, particularly in Vision-and-Language 
Navigation (VLN) applications, poses significant challenges for efficient storage and 
management in cloud-based environments. While data deduplication is a vital technique 
for minimizing storage requirements, it often introduces critical security concerns. This 
paper proposes a novel deduplication framework aimed at enhancing storage efficiency 
without compromising data security. By integrating deduplication processes on both the 
client and cloud sides, the proposed system effectively reduces data redundancy while 
safeguarding confidentiality. Its lightweight preprocessing design makes it well-suited for 
deployment on resource-limited devices, such as those in IoT ecosystems. Furthermore, the 
system incorporates advanced security measures to defend against side-channel attacks and 
unauthorized access. Experimental evaluations using the Touchdown dataset reveal that the 
proposed framework achieves a notable compression rate of approximately 66%, 
significantly reducing storage overhead while preserving data integrity. These results 
underscore the system’s potential for enabling secure and scalable textual data management 
in modern cloud infrastructures. 

Index Terms: Cloud storage, data deduplication, textual data security, compression, 
secure data management, Vision-and-Language Navigation (VLN), encryption, bandwidth 
optimization. 
 

I. INTRODUCTION 
 

The increasing adoption of Vision-and-Language Navigation (VLN) systems has resulted in a 
massive surge in textual data generation. These systems allow autonomous agents to interpret human 
instructions and navigate real-world environments, playing a key role in robotics, virtual assistants, and 
smart home automation. As textual data serves as the foundation for communication between humans and 
machines, effective storage and management have become essential to ensure system efficiency and 
scalability. 
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Data deduplication is widely recognized as a powerful technique for minimizing redundant data 
storage, particularly in large-scale cloud environments. By identifying and eliminating duplicate copies of 
files or data blocks, deduplication significantly reduces storage consumption and improves data retrieval 
efficiency. In backup systems, it has been shown to lower storage needs by up to 90%, while in general 
file systems, it can achieve a reduction of around 68%. However, traditional deduplication methods 
introduce security concerns, particularly in cloud-based environments, where cross-user deduplication 
increases the risk of unauthorized data access and side-channel attacks. 

To overcome these challenges, this paper presents DEDUCT, a secure and optimized deduplication 
framework specifically designed for textual data. Unlike conventional methods, DEDUCT integrates 
client-side and cloud-side deduplication techniques to enhance both security and storage efficiency. The 
framework employs lightweight preprocessing at the client level, ensuring that data remains encrypted 
before deduplication, thereby reducing exposure to security threats. Additionally, DEDUCT minimizes 
bandwidth usage through structured tokenization and transformation processes, making it highly suitable 
for resource-constrained environments such as IoT devices and mobile systems. The remainder of this 
paper is organized as follows: Section II introduces key concepts related to deduplication. Section III 
outlines the system and adversary models used in this framework. Section IV describes the proposed 
methodology, followed by performance analysis in Section V. Security evaluations are provided in Section 
VI, and Section VII discusses strategies to prevent data loss. Experimental results are presented in Section 
VIII, related works are reviewed in Section IX, and Section X concludes the paper with key findings and 
directions for future research. 

II. LITERATURE SURVEY 

The exponential growth of textual data has necessitated efficient storage management 
techniques, particularly in cloud environments. Data deduplication has emerged as an essential 
approach to minimize storage costs and enhance data security. Traditional deduplication techniques, 
however, pose security and privacy challenges, leading to the development of advanced methods that 
integrate encryption and intelligent data processing techniques. This literature survey reviews key 
developments in data deduplication, with a focus on security-enhanced and generalized deduplication 
approaches. 
 
Data Deduplication Techniques: 

Data deduplication aims to eliminate redundant data by storing only unique instances and 
maintaining references to duplicates. It can be categorized into file-level, block-level, and variable-sized 
deduplication. File-level deduplication identifies entire duplicate files, whereas block-level deduplication 
segments data into fixed or variable-sized chunks for redundancy detection. The latter is more efficient, 
particularly in storage systems where files contain significant similarities rather than exact duplication. 

Secure Data Deduplication: 

While deduplication reduces storage requirements, it introduces security vulnerabilities such as 
unauthorized access and side-channel attacks. To address these concerns, various encryption-based 
deduplication schemes have been proposed. Convergent encryption ensures identical plaintexts yield the 
same ciphertexts, facilitating deduplication while preserving confidentiality. However, this method 
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remains susceptible to brute-force attacks, as predictable data can be inferred. To mitigate these risks, 
hybrid encryption methods have been introduced, where encryption keys are managed securely through 
third-party key distribution mechanisms. Some studies have explored integrating authenticated data 
structures, such as verifiable authenticated data structures (VADS), to improve integrity and resistance to 
tampering. These techniques enhance security but often introduce computational overhead, necessitating 
efficient trade-offs between security and performance. 

Privacy-Preserving Deduplication 
Privacy concerns in deduplication arise from the need to balance storage efficiency with data 

confidentiality. Some schemes employ differential privacy techniques to obscure data patterns, preventing 
adversarial inference. Secure multi-party computation (MPC) has also been explored to enable encrypted 
deduplication without exposing sensitive data to cloud providers. Additionally, threshold-based 
deduplication methods have been introduced, where a file is only deduplicated after surpassing a 
predefined popularity threshold, reducing the risk of inference attacks. 

Performance Optimization in Deduplication 
Efficient deduplication requires balancing computational complexity, storage savings, and 

bandwidth efficiency. Recent approaches incorporate machine learning techniques to predict data 
redundancy dynamically, improving deduplication efficiency in real-time applications. Moreover, 
compression techniques such as lossless transformation models further enhance storage savings without 
compromising data integrity. 

III. METHODOLOGY 

System Architecture 
The proposed DEDUPLICATION for Cloud Text (DEDUCT) framework is designed to efficiently 

eliminate redundant textual data in cloud storage while maintaining security. The system operates in a 
hybrid environment, distributing tasks between the client and the cloud service provider (CSP). The 
architecture consists of three main components: 

● Key Distribution Center (KDC): Acts as a trusted authority that generates and distributes 
encryption keys to authenticated users. 

● Client Device: Handles preprocessing, data segmentation, encryption, and local deduplication 
before uploading data. 

● Cloud Storage Provider: Stores the encrypted textual data, verifies duplicates, and manages 
pointer-based storage for efficiency 

Client-Side Processing 
The deduplication process begins at the client-side, reducing storage and bandwidth usage before 
transmission to the cloud. The client follows a structured sequence of operations: 
A. Tokenization 

● The input textual data is broken into smaller, meaningful units (tokens) using Natural Language 
Processing (NLP) techniques. 

● This step ensures that similar text fragments can be compared efficiently. 
B. Transformation (Base-Deviation Model) 

● Each token is processed to extract a base version (canonical form) and a deviation (differences 
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from the base). 
● The Wagner-Fischer algorithm is applied to identify the minimal set of modifications needed to 

transform the base into the original token. 
● This transformation helps in detecting near-duplicate content, improving deduplication efficiency. 

C. CRC-Based Deduplication 
● A Cyclic Redundancy Check (CRC) hash is generated for each base. 
● The client maintains a local CRC cache to track previously encountered bases. 
● If a base is already stored locally, only the deviation is sent to the cloud, significantly reducing 

bandwidth consumption. 
● If the base is new, it is encrypted before transmission. 

D. Encryption for Security 
● To maintain data confidentiality, the base is encrypted using a secure cryptographic algorithm 

before being sent to the CSP. 
● The encryption process ensures that only authorized users with the correct key can reconstruct the 

original data. 
 

 

Fig 1: System Architecture 
 
Cloud-Side Processing 

Upon receiving data from the client, the CSP follows these steps: 
● CRC Matching: The cloud checks its storage for existing CRC values. If a match is found, the 

encrypted base is retrieved. 
● Duplicate Management: If the received encrypted base is identical to an existing entry, a pointer-

based reference is created instead of storing duplicate data. 
● Handling Encryption Variations: If two encrypted versions of the same base differ due to 

encryption randomness, both versions are stored separately to prevent data tampering attacks. 
● Secure Storage Management: The cloud maintains metadata for efficient lookup and retrieval 

while ensuring data confidentiality. 
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Security Measures 
DEDUCT incorporates multiple security features to safeguard data integrity and prevent attacks: 
● Resisting Side-Channel Attacks: The encryption process prevents unauthorized access through 

hash value brute-force attempts. 
● Protection Against Poisoning Attacks: The system does not immediately overwrite stored 

encrypted data, preventing attackers from injecting malicious content. 
● Threshold-Based Validation: To avoid Sybil attacks, where multiple fake identities try to 

manipulate storage, a usage limit per user is enforced. 
 
Implementation and Experimentation 
The DEDUPT framework is developed as a Full Stack Java application using the following technologies: 

● Frontend: J2EE (JSP, Servlet) for user interaction, where users upload textual data. 
● Backend: Java/J2EE for handling deduplication logic, encryption, and communication with the 

cloud storage provider. 
● Database: MySQL for storing deduplication metadata, encryption keys, and textual data. 
● Security: Convergent Encryption Technique to ensure that deduplicated data remains secure. 

The system is designed to minimize redundant data storage, improve network efficiency, and provide fine-
grained deduplication at the block level rather than just the file level. 
 
Evaluation Metrics 
The system was evaluated based on the following performance indicators: 

● Compression Ratio (CR): Measures how effectively the deduplication process reduces storage 
space. 

● Bandwidth Efficiency: Evaluates the reduction in data transmission due to client-side 
deduplication. 

● Processing Time: Analyses the time taken by Java-based transformations, tokenization, and 
encryption. 

● Security Strength: Ensures the Convergent Encryption mechanism prevents side-channel attacks 
and unauthorized data access. 

 
Formulas 
Client Storage Cost 
The amount of storage required on the client-side is determined by the number of stored CRC values and 
their individual sizes. 
 

S client = ∣LC∣ × C size 

  
Where: 

● S client = Total storage required on the client 
● ∣LC∣ = Number of locally stored CRC values 
● C size = Size of each CRC value 

This equation ensures that client devices only store essential metadata, reducing redundancy and 
optimizing storage space. 
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Cloud Storage Cost 
The cloud storage cost accounts for encrypted data, CRC values, and duplicate pointers. 
 
S cloud = (∣SEB∣ × E size) + (∣dp∣ × log2 ∣SEB∣) + t∈T ∑C dev 

 
Where: 

● Scloud = Total cloud storage required 
● ∣SEB∣ = Number of stored encrypted bases 
● Esize = Size of each encrypted base 
● ∣dp∣ = Number of duplicate pointers 
● log2∣SEB∣ = Number of bits needed for addressing stored encrypted bases 
● t ∈T ∑C dev  = Total cost of storing deviations in deduplication 

This formula ensures that duplicate data does not unnecessarily increase cloud storage consumption. 

 
Encryption Ratio 
The encryption ratio measures the proportion of encrypted data relative to the total data size. 
 
Er = Size (TEB)/ Size (Raw Data) 
 
Where: 

● Er = Encryption ratio 
● Size (TEB) = Total size of transmitted encrypted bases 
● Size (Raw Data) = Original size of the input data 

This helps evaluate the efficiency of encryption within the deduplication process. 

 
Compression Ratio 
The compression ratio determines how effectively DEDUPT reduces storage space. 
 
 Cr = Scloud/ Size (Raw Data) 
 
Where: 

● Cr = Compression ratio 
● Scloud = Final storage used after deduplication 
● Size (Raw Data) = Original size of the dataset 

A lower compression ratio indicates better storage efficiency. 

 
Bandwidth Ratio 
The bandwidth ratio calculates how much data is transmitted relative to the original data size. 
BWr = BWU/ Size (Raw Data) 
Where: 
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● BWr = Bandwidth ratio 
● BWU = Total amount of data transmitted (includes CRC, encrypted bases, and deviations) 
● Size (Raw Data) = Original dataset size 

This ratio determines how much DEDUPT reduces network load through client-side deduplication. 

 
Probability of CRC Collision (Security Analysis) 
To estimate the probability of hash collisions in CRC-based deduplication, the formula is: 

Col (n, k) = 2 n – 2 k/  2 k 
Where: 

● Col (n, k) = Estimated number of CRC collisions 
● n = Data size in bits 
● k = CRC bit size (e.g., CRC-8, CRC-16) 

 
IV. RESULTS AND DISCUSSION 
 

The DEDUPT framework was tested using the Touchdown dataset, a collection of human-written 
navigation instructions. The objective was to evaluate storage efficiency, bandwidth usage, security, and 
overall system performance. Below are the key findings and discussions based on the experimental results. 

Deduplication Efficiency 
One of the primary objectives of DEDUPT was to minimize redundant textual data storage while 
maintaining data security. 

● The compression ratio (CR) reached 66%, meaning the storage requirements were reduced 
significantly. 

● By applying block-level deduplication, redundant text chunks were removed at a finer level, 
leading to more efficient storage utilization. 

● Compared to traditional file-based deduplication, which only removes identical files, DEDUPT 
eliminates similar textual content while preserving essential data structure. 
 

Bandwidth Optimization 
Since DEDUPT integrates client-side deduplication, bandwidth usage was significantly reduced. 

● The system achieved a bandwidth reduction of up to 67%, meaning less data was transmitted to 
the cloud. 

● The client-side preprocessing removed duplicate data before sending it to the cloud, leading to a 
faster upload process. 

● This bandwidth efficiency is particularly beneficial for IoT devices and mobile applications, where 
network constraints are a concern. 

 
Processing Time and Performance 
The DEDUPT framework was implemented using Java/J2EE with MySQL for storage. The processing 
performance was measured in terms of execution time for various operations. 

● Tokenization and transformation were efficiently handled using Wagner-Fischer algorithm, with 
minimal processing overhead. 
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● CRC-based indexing improved the lookup time for duplicates, reducing computational load on the 
cloud. 

● Encryption and deduplication combined did not introduce significant delays, making the system 
suitable for real-time applications. 

 
Comparison with Existing Methods 
The performance of DEDUPT was compared against Classic Deduplication (CD) and Generalized 
Deduplication (GD-Hamming). 
 

 

 

 

● DEDUPT outperformed traditional methods in terms of storage efficiency, bandwidth reduction, 
and security measures. 

● Unlike GD-Hamming, which lacks encryption, DEDUPT integrates security mechanisms while 
still achieving high deduplication rates. 

 
Discussion 

The results demonstrate that DEDUPT effectively reduces storage costs and bandwidth 
consumption, making it an ideal solution for cloud-based textual data management. The hybrid 
deduplication approach, combining client-side and cloud-side techniques, ensures efficient storage 
utilization without compromising security. However, a few areas for future improvements include: 

1. Further optimizing transformation functions to enhance deduplication accuracy. 
2. Exploring AI-based deduplication techniques to automatically detect similar textual patterns. 
3. Enhancing energy efficiency to make the system suitable for low-power devices like IoT sensors. 

 

Fig 2: View Data Owners 

Method Compression Ratio    Bandwidth Reduction    Security Level 
Classic Deduplication (CD) 45% 40% Low 

Generalized Deduplication (GD) 58% 55% Medium 
DEDUPT (Proposed System) 66% 67% High 
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Fig. 3: View Data Fragments 

 

Fig. 4: View all Transactions 
 

V. CONCLUSION AND FUTURE WORK 
 

The DEDUCT framework presents an effective and secure approach to deduplicating textual data 
in cloud environments. By integrating a hybrid deduplication mechanism that combines client-side 
preprocessing and cloud-side storage optimization, DEDUCT significantly reduces storage requirements 
while maintaining data confidentiality. The system achieves an impressive compression ratio of 
approximately 66%, which translates into substantial cost savings for cloud storage providers. 
Additionally, its lightweight processing makes it ideal for resource-constrained devices, such as IoT and 
mobile systems. Experimental evaluations confirm that DEDUCT outperforms traditional deduplication 
methods in terms of storage efficiency and security, making it a promising solution for large-scale textual 
data management. To further enhance DEDUCT, future research can explore advanced natural language 
processing (NLP) and machine learning techniques to improve data preprocessing. More sophisticated 
tokenization and lemmatization algorithms can enhance duplicate detection accuracy while reducing 
computational overhead. Additionally, optimizing the framework for energy efficiency is essential for its 
deployment in IoT and edge computing environments. Future improvements can also focus on integrating 
verifiable authenticated data structures (VADS) to strengthen data integrity and prevent unauthorized 
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modifications. Another area of interest is refining security mechanisms to counter evolving threats, 
ensuring that the framework remains resilient against emerging cyber risks. Finally, expanding 
DEDUCT’s applicability to other datasets beyond the Touchdown dataset will help validate its 
effectiveness across various domains. 
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