Vol. 4 No. 4 (2025): October
RESEARCH ARTICLES

Predicting EV Battery Lifespan Using Machine Learning

N Vasavi
Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
A Akshith Reddy
Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
K Poorna Chandra
Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
K S S Ramakrishna
Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
P Prasanthi
Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.

Published 2025-04-20

Keywords

  • Electric Vehicle Batteries,
  • Machine Learning (ML),
  • Remaining Useful Life (RUL),
  • Random Forest (RF),
  • Support Vector Machine

How to Cite

N Vasavi, A Akshith Reddy, K Poorna Chandra, K S S Ramakrishna, & P Prasanthi. (2025). Predicting EV Battery Lifespan Using Machine Learning. International Journal of Computational Learning & Intelligence, 4(4), 619–632. https://doi.org/10.5281/zenodo.15250347

Abstract

The continuous advancement of electric vehicle (EV) technology has heightened the emphasis on sustainable energy storage, making lithium-ion batteries a crucial component. Ensuring battery reliability and longevity is essential for optimizing EV performance and reducing maintenance costs. This study explores the prediction of Remaining Useful Life (RUL) for lithium-ion batteries using advanced Machine Learning (ML) models, specifically Random Forest (RF) and Support Vector Machine (SVM). Accurate RUL estimation enhances battery management, prevents failures, and improves safety.A comprehensive dataset from the NASA Ames Prognostics Center of Excellence is preprocessed, with the One-way ANOVA method applied for optimal feature selection. Data normalization techniques are employed to enhance model consistency, while hyperparameter tuning (HPT) optimizes predictive performance. Real-time factors such as temperature fluctuations and usage cycles are incorporated to analyze their impact on battery degradation. The proposed system provides deeper insights into battery aging trends, enabling proactive maintenance strategies.Model performance is evaluated using R2 score and Mean Squared Error (MSE), where the RF model achieves an R2 score of 0.83 and an MSE of 1.67, demonstrating high reliability. The results contribute to improving battery efficiency and safety through predictive modeling, facilitating better battery management in EVs. By leveraging ML-driven predictive analytics, this research supports the advancement of sustainable and cost-effective energy solutions, promoting wider EV adoption and a greener future.

References

  1. Gao, Y., Zhang, X., Guo, B., Zhu, C., Wiedemann, J., Wang, L., & Cao, J. (2020). Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery. IEEE Transactions on Industrial Informatics, 16(5), 3417–3429. https://doi.org/10.1109/TII.2019.2949815
  2. Peng, J., Zhou, Z., Wang, J., Wu, D., & Guo, Y. (2019). Residual remaining useful life prediction method for lithium-ion batteries in satellite with incomplete healthy historical data. IEEE Access, 7, 127788–127799. https://doi.org/10.1109/ACCESS.2019.2939480
  3. Gabbar, H., Othman, A., & Abdussami, M. (2021). Review of battery management systems (BMS) development and industrial standards. Technologies, 9(2), 28. https://doi.org/10.3390/technologies9020028
  4. Xing, Y., Ma, E. W. M., Tsui, K. L., & Pecht, M. (2011). Battery management systems in electric and hybrid vehicles. Energies, 4(11), 1840–1857. https://doi.org/10.3390/en4111840
  5. Ahmed, S. T., Kumar, V. V., Singh, K. K., Singh, A., Muthukumaran, V., & Gupta, D. (2022). 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Computers and Electrical Engineering, 102, 108210.
  6. Ahmed, S. T., Singh, D. K., Basha, S. M., Abouel Nasr, E., Kamrani, A. K., & Aboudaif, M. K. (2021). Neural network based mental depression identification and sentiments classification technique from speech signals: A COVID-19 Focused Pandemic Study. Frontiers in public health, 9, 781827.
  7. Ahmed, S. T., Vinoth Kumar, V., Mahesh, T. R., Narasimha Prasad, L. V., Velmurugan, A. K., Muthukumaran, V., & Niveditha, V. R. (2024). FedOPT: federated learning-based heterogeneous resource recommendation and optimization for edge computing. Soft Computing, 1-12.
  8. Fathima, A. S., Basha, S. M., Ahmed, S. T., Khan, S. B., Asiri, F., Basheer, S., & Shukla, M. (2025). Empowering consumer healthcare through sensor-rich devices using federated learning for secure resource recommendation. IEEE Transactions on Consumer Electronics
  9. Fathima, A. S., Basha, S. M., Ahmed, S. T., Mathivanan, S. K., Rajendran, S., Mallik, S., & Zhao, Z. (2023). Federated learning based futuristic biomedical big-data analysis and standardization. Plos one, 18(10), e0291631.
  10. Fathima, A. S., Reema, S., & Ahmed, S. T. (2023, December). ANN based fake profile detection and categorization using premetric paradigms on instagram. In 2023 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-6). IEEE
  11. Guha, A., & Patra, A. (2018). Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries. IEEE Transactions on Instrumentation and Measurement, 67(8), 1836–1849. https://doi.org/10.1109/TIM.2018.2803202
  12. Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery lifetime prognostics. Joule, 4(2), 310–346. https://doi.org/10.1016/j.joule.2019.11.018
  13. Jamshidi, M. B., & Rostami, S. (2017). A dynamic artificial neural network approach to estimate thermal behaviors of Li-ion batteries. In Proceedings of the IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS) (Vol. 7, pp. 116–121). IEEE. https://doi.org/10.1109/I2CACIS.2017.8239036
  14. Jamshidi, M. B., Alibeigi, N., Lalbakhsh, A., & Roshani, S. (2019). An ANFIS approach to modeling a small satellite power source of NASA. In Proceedings of the IEEE 16th International Conference on Networking, Sensing and Control (ICNSC) (pp. 459–464). IEEE. https://doi.org/10.1109/ICNSC.2019.8743159
  15. Jamshidi, M. B., Jamshidi, M., & Rostami, S. (2017). An intelligent approach for nonlinear system identification of a Li-ion battery. In Proceedings of the IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 98–103). IEEE. https://doi.org/10.1109/I2CACIS.2017.8239021
  16. Kumar, A., Satheesha, T. Y., Salvador, B. B. L., Mithileysh, S., & Ahmed, S. T. (2023). Augmented Intelligence enabled Deep Neural Networking (AuDNN) framework for skin cancer classification and prediction using multi-dimensional datasets on industrial IoT standards. Microprocessors and Microsystems, 97, 104755.
  17. Lipu, M. S. H., Hannan, M. A., Hussain, A., Hoque, M. M., Ker, P. J., Saad, M. H. M., & Ayob, A. (2018). A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. Journal of Cleaner Production, 205, 115–133. https://doi.org/10.1016/j.jclepro.2018.09.077
  18. Liu, K., Li, Y., Hu, X., Lucu, M., & Widanage, W. D. (2020). Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries. IEEE Transactions on Industrial Informatics, 16(6), 3767–3777. https://doi.org/10.1109/TII.2019.2952906
  19. Lui, Y. H., Li, M., Downey, A., Shen, S., Nemani, V. P., Ye, H., VanElzen, C., Jain, G., Hu, S., Laflamme, S., & Hu, C. (2021). Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction. Journal of Power Sources, 485, Article 229327. https://doi.org/10.1016/j.jpowsour.2020.229327
  20. Ma, J., Xu, S., Shang, P., Ding, Y., Qin, W., Cheng, Y., Lu, C., Su, Y., Chong, J., Jin, H., & Lin, Y. (2020). Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method. Applied Energy, 262, Article 114490. https://doi.org/10.1016/j.apenergy.2020.114490
  21. She, C., Wang, Z., Sun, F., Liu, P., & Zhang, L. (2020). Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network. IEEE Transactions on Industrial Informatics, 16(5), 3345–3354. https://doi.org/10.1109/TII.2019.2949264
  22. Shi, Y., Xu, B., Tan, Y., Kirschen, D., & Zhang, B. (2019). Optimal battery control under cycle aging mechanisms in pay for performance settings. IEEE Transactions on Automatic Control, 64(6), 2324–2339. https://doi.org/10.1109/TAC.2018.2867720
  23. Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z. (2020). A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 131, Article 110015. https://doi.org/10.1016/j.rser.2020.110015
  24. Xiong, R., Li, L., & Tian, J. (2018). Towards a smarter battery management system: A critical review on battery state of health monitoring methods. Journal of Power Sources, 405, 18–29. https://doi.org/10.1016/j.jpowsour.2018.10.019
  25. Xu, B., Zhao, J., Zheng, T., Litvinov, E., & Kirschen, D. S. (2018). Factoring the cycle aging cost of batteries participating in electricity markets. IEEE Transactions on Power Systems, 33(2), 2248–2259. https://doi.org/10.1109/TPWRS.2017.2749260
  26. Zhang, C., Wang, Y., Gao, Y., Wang, F., Mu, B., & Zhang, W. (2019). Accelerated fading recognition for lithium-ion batteries with nickel-cobalt-manganese cathode using quantile regression method. Applied Energy, 256, Article 113841. https://doi.org/10.1016/j.apenergy.2019.113841