Vol. 4 No. 4 (2025): October
LITERATURE / REVIEW ARTICLE

AI-Driven Advanced Techniques for Detecting Dry Eye Disease Using Multi-Source Evidence: Case Studies, Applications, Challenges, and Future Perspectives

P Parimala kumari
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
Ch V Jithendra
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
B Yochitha Devi
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
B Prasanthi
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
B Madan Mohan Reddy .
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.
M Vishnu Vardhan
Department of AI & Data Science, Annamacharya Institute of Technology and Sciences, Kadapa, Andhra Pradesh, India.

Published 2025-04-20

Keywords

  • Artificial Intelligence,
  • Dry Eye Disease,
  • multi-source evidence,
  • ophthalmology,
  • advanced algorithms,
  • , diagnostic precision
  • ...More
    Less

How to Cite

P Parimala kumari, Ch V Jithendra, B Yochitha Devi, B Prasanthi, B Madan Mohan Reddy ., & M Vishnu Vardhan. (2025). AI-Driven Advanced Techniques for Detecting Dry Eye Disease Using Multi-Source Evidence: Case Studies, Applications, Challenges, and Future Perspectives. International Journal of Computational Learning & Intelligence, 4(4), 680–696. https://doi.org/10.5281/zenodo.15250752

Abstract

This study examines the transformative potential of Artificial Intelligence (AI) in the early diagnosis and prognostic evaluation of Dry Eye Disease (DED), aiming to elevate the precision of clinical interventions for eye-care specialists. Despite AI’s promising capabilities, its deployment is hindered by challenges such as diverse diagnostic inputs, the multifaceted etiology of DED, and the integration of cross-disciplinary expertise, all of which affect the transparency, reliability, and practical utility of AI-driven detection systems. Through a thorough analysis of the past five years, we assess datasets, diagnostic criteria, standardized benchmarks, and cutting-edge AI algorithms central to DED detection. We organize DED diagnostic strategies into three categories based on their alignment with AI technologies: (1) methods rooted in established benchmarks or comparable standards, (2) pioneering AI techniques with distinct advantages, and (3) supportive approaches enhancing AI-based detection. This research proposes refined diagnostic protocols, promotes the synthesis of multiple evidence sources, and delineates future research directions to guide subsequent investigations. By elucidating foundational insights, innovative methodologies, persistent challenges, and prospective pathways, this work advances ophthalmic disease detection, highlighting AI’s critical role in both scholarly inquiry and clinical ophthalmology.

References

  1. Ahmed, S. T., Basha, S. M., Ramachandran, M., Daneshmand, M., & Gandomi, A. H. (2023). An edge-AI-enabled autonomous connected ambulance-route resource recommendation protocol (ACA-R3) for eHealth in smart cities. IEEE Internet of Things Journal, 10(13), 11497-11506.
  2. Ahmed, S. T., Fathima, A. S., Nishabai, M., & Sophia, S. (2024). Medical ChatBot assistance for primary clinical guidance using machine learning techniques. Procedia Computer Science, 233, 279-287.
  3. Alakwaa, F. M., Chaudhary, K., & Garmire, L. X. (2018). Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. Journal of Proteome Research, 17(1), 337–347. https://doi.org/10.1021/acs.jproteome.7b00378
  4. Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020). Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1), 310. https://doi.org/10.1186/s12911-020-01332-6
  5. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x
  6. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391
  7. Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P., & Vardoulakis, L. M. (2020). A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3313831.3376718
  8. Biswal, B., Chowdhury, S. A., & Sethi, A. (2022). Explainable AI for healthcare: A survey, taxonomy, and challenges. ACM Computing Surveys, 55(6), 1–36. https://doi.org/10.1145/3501295
  9. Briganti, G., & Le Moine, O. (2020). Artificial intelligence in medicine: Today and tomorrow. Frontiers in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027
  10. Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28(3), 231–237. https://doi.org/10.1136/bmjqs-2018-008370
  11. Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—Addressing ethical challenges. New England Journal of Medicine, 378(11), 981–983. https://doi.org/10.1056/NEJMp1714229
  12. Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine—Beyond the peak of inflated expectations. New England Journal of Medicine, 376(26), 2507–2509. https://doi.org/10.1056/NEJMp1702071
  13. Chen, J., Liu, B., Zhang, W., Li, J., Song, Y., Hu, B., & Qiu, B. (2021). Deep learning-based classification of chest X-ray images into COVID-19 and other infectious diseases. Frontiers in Public Health, 9, 685542. https://doi.org/10.3389/fpubh.2021.685542
  14. Chen, M., Hao, Y., Cai, Y., Wang, Y., & Song, J. (2020). Artificial intelligence-based smart healthcare system for healthcare 4.0 applications. IEEE Access, 8, 73322–73333. https://doi.org/10.1109/ACCESS.2020.2986250
  15. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., ... & Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387. https://doi.org/10.1098/rsif.2017.0387
  16. De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Suleyman, M. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350. https://doi.org/10.1038/s41591-018-0107-6
  17. Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current Cardiology Reports, 16(1), 441. https://doi.org/10.1007/s11886-013-0441-8
  18. Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., ... & van der Laak, J. A. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22), 2199–2210. https://doi.org/10.1001/jama.2017.14585
  19. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  20. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115–118. https://doi.org/10.1038/nature21056
  21. Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 295–336. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
  22. Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), e745–e750. https://doi.org/10.1016/S2589-7500(21)00208-9
  23. Greenspan, H., van Ginneken, B., & Summers, R. M. (2016). Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, 35(5), 1153–1159. https://doi.org/10.1109/TMI.2016.2553401
  24. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410. https://doi.org/10.1001/jama.2016.17216
  25. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25, 30–36. https://doi.org/10.1038/s41591-018-0307-0
  26. He, X., Zhao, K., Chu, X., & Liu, Z. (2022). AI and medical diagnosis: From black-box to interpretable models. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(1), 1–15. https://doi.org/10.1109/TETCI.2021.3120712
  27. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312. https://doi.org/10.1002/widm.1312
  28. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41571-018-0016-5
  29. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18, 500–510. https://doi.org/10.1038/s41571-018-0016-5
  30. Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: Radiologists and pathologists as information specialists. JAMA, 316(22), 2353–2354. https://doi.org/10.1001/jama.2016.17438
  31. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  32. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  33. Johnson, A. E. W., Pollard, T. J., Shen, L., Li-wei, H. L., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. https://doi.org/10.1038/sdata.2016.35
  34. Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., ... & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
  35. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17, 195. https://doi.org/10.1186/s12916-019-1426-2
  36. Ker, J., Wang, L., Rao, J., & Lim, T. (2018). Deep learning applications in medical image analysis. IEEE Access, 6, 9375–9389. https://doi.org/10.1109/ACCESS.2017.2788044
  37. Kumar, S. S., Ahmed, S. T., Sandeep, S., Madheswaran, M., & Basha, S. M. (2022). Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques. Computers, Materials & Continua, 72(1).
  38. Kundu, S. (2021). AI in medicine must be explainable. Nature Medicine, 27, 1328. https://doi.org/10.1038/s41591-021-01431-6
  39. Lakhani, P., & Sundaram, B. (2017). Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2), 574–582. https://doi.org/10.1148/radiol.2017162326
  40. Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep learning in medical imaging: General overview. Korean Journal of Radiology, 18(4), 570–584. https://doi.org/10.3348/kjr.2017.18.4.570
  41. Liao, J., Zhang, T., Wan, J., Zhang, H., & Wu, D. (2021). Deep learning-based medical image classification with multi-feature fusion. Computers in Biology and Medicine, 133, 104408. https://doi.org/10.1016/j.compbiomed.2021.104408
  42. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  43. Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., ... & van der Laak, J. (2016). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6, 26286. https://doi.org/10.1038/srep26286
  44. Liu, Y., Chen, P. H. C., Krause, J., & Peng, L. (2019). How to read articles that use machine learning: Users’ guides to the medical literature. JAMA, 322(18), 1806–1816. https://doi.org/10.1001/jama.2019.9035
  45. Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., ... & Stumpe, M. C. (2017). Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442. https://arxiv.org/abs/1703.02442
  46. London, A. J. (2019). Artificial intelligence and black-box medical decisions: Accuracy versus explainability. Hastings Center Report, 49(1), 15–21. https://doi.org/10.1002/hast.973
  47. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002
  48. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002
  49. Mahmud, N., Riley, T. A., & Ratcliffe, S. J. (2021). Ethical machine learning in health care. The Journal of Law, Medicine & Ethics, 49(2), 191–194. https://doi.org/10.1017/jme.2021.49
  50. Mazurowski, M. A., Buda, M., Saha, A., & Bashir, M. R. (2019). Deep learning in radiology: An overview of the concepts and a survey of the state of the art. Radiology: Artificial Intelligence, 1(1), e180010. https://doi.org/10.1148/ryai.2019180010
  51. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577, 89–94. https://doi.org/10.1038/s41586-019-1799-6
  52. Mhasawade, V., Zhao, Y., & Chunara, R. (2021). Machine learning and algorithmic fairness in public and population health. Nature Machine Intelligence, 3, 659–666. https://doi.org/10.1038/s42256-021-00388-w
  53. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044
  54. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044
  55. Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20(5), e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4
  56. Nguyen, N. T., Nguyen, T. P., Nguyen, T. T., Van Nguyen, L., & Nahavandi, S. (2021). Artificial intelligence in the battle against coronavirus (COVID-19): A survey and future research directions. Medical Image Analysis, 67, 101805. https://doi.org/10.1016/j.media.2020.101805
  57. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
  58. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
  59. Pasha, A., Ahmed, S. T., Painam, R. K., Mathivanan, S. K., Mallik, S., & Qin, H. (2024). Leveraging ANFIS with Adam and PSO optimizers for Parkinson's disease. Heliyon, 10(9).
  60. Periasamy, K., Periasamy, S., Velayutham, S., Zhang, Z., Ahmed, S. T., & Jayapalan, A. (2022). A proactive model to predict osteoporosis: An artificial immune system approach. Expert Systems, 39(4), e12708.
  61. Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2020). Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. https://doi.org/10.1109/RBME.2020.3000453
  62. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. npj Digital Medicine, 1, 18. https://doi.org/10.1038/s41746-018-0029-1
  63. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. https://doi.org/10.48550/arXiv.1711.05225
  64. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. https://arxiv.org/abs/1711.05225
  65. Ramesh, A. N., Kambhampati, C., Monson, J. R., & Drew, P. J. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86(5), 334. https://doi.org/10.1308/147870804290
  66. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
  67. Saba, L., Biswas, M., Kuppili, V., Cuadrado-Godia, E., Laird, J. R., Suri, H. S., & Suri, J. S. (2019). The present and future of deep learning in radiology. European Journal of Radiology, 114, 14–24. https://doi.org/10.1016/j.ejrad.2019.02.038
  68. Sharma, A., Harrington, R. A., McClellan, M. B., Turakhia, M., Eapen, Z. J., Steinhubl, S. R., ... & Peterson, E. D. (2018). Using digital health technology to better generate evidence and deliver evidence-based care. Journal of the American College of Cardiology, 71(23), 2680–2690. https://doi.org/10.1016/j.jacc.2018.03.523
  69. Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
  70. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
  71. Sreedhar, K. S., Ahmed, S. T., & Sreejesh, G. (2022, June). An Improved Technique to Identify Fake News on Social Media Network using Supervised Machine Learning Concepts. In 2022 IEEE World Conference on Applied Intelligence and Computing (AIC) (pp. 652-658). IEEE.
  72. Suresh, H., & Guttag, J. V. (2021). A framework for understanding unintended consequences of machine learning. Communications of the ACM, 64(1), 62–71. https://doi.org/10.1145/3430368
  73. Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10, 257–273. https://doi.org/10.1007/s12194-017-0406-5
  74. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308
  75. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25, 44–56. https://doi.org/10.1038/s41591-018-0300-7
  76. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25, 44–56. https://doi.org/10.1038/s41591-018-0300-7
  77. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2097–2106. https://doi.org/10.1109/CVPR.2017.369
  78. Wang, Z., Chen, M., & Wang, X. (2022). Artificial intelligence in healthcare: Past, present and future. Seminars in Cancer Biology, 86, 1–12. https://doi.org/10.1016/j.semcancer.2021.08.001
  79. Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., ... & Goldenberg, A. (2019). Do no harm: A roadmap for responsible machine learning for health care. Nature Medicine, 25, 1337–1340. https://doi.org/10.1038/s41591-019-0548-6
  80. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9
  81. Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z
  82. Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2, 719–731. https://doi.org/10.1038/s41551-018-0305-z
  83. Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., & Alamri, A. (2017). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88–95. https://doi.org/10.1109/JSYST.2015.2460747
  84. Zhang, Z., Sejdić, E., & Li, H. (2022). Federated learning for healthcare: Systematic review and evaluation. IEEE Transactions on Artificial Intelligence, 3(3), 199–215. https://doi.org/10.1109/TAI.2022.3150940
  85. Zhou, L. Q., Wang, J. Y., Yu, S. Y., Wu, G. G., Wei, Q., Deng, Y. B., ... & Xu, H. X. (2019). Artificial intelligence in medical imaging of the liver. World Journal of Gastroenterology, 25(6), 672–682. https://doi.org/10.3748/wjg.v25.i6.672
  86. Zhou, T., Lu, H., Yang, Z., Qiu, S., Huo, Y., & Zhang, L. (2021). The role of AI in COVID-19: A survey. IEEE Transactions on Artificial Intelligence, 2(4), 310–327. https://doi.org/10.1109/TAI.2021.3079287