Published 2025-04-20
Keywords
- Wetland Hydrology Forecasting,
- Remote Sensing for Subsurface Moisture,
- AI-Enhanced Ecosystem Stability,
- Distributed Sensor Networks
How to Cite
Copyright (c) 2025 P Parimala Kumari, P Vidhura, A Eshwari, K Jaya Shankar, G V Krishna Mohan, V Vinod Kumar Reddy

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Peatlands are a critical ecological concern due to their susceptibility to extensive carbon emissions during wildfires. Traditional methods for monitoring Ground Water Level (GWL) in these areas are labor-intensive, lack real-time insights, and impede proactive fire management. This study introduces an Internet of Things (IoT)-based system integrated with a neural network model for real-time GWL prediction. The proposed approach leverages atmospheric parameters to forecast GWL, allowing stakeholders to implement timely preventive measures to mitigate fire hazards. The neural network model exhibits high predictive accuracy, achieving a Root Mean Square Error (RMSE) ranging from 3.554 to 4.920. This ensures a 99% accuracy level within a deviation of 14.760 mm from actual GWL measurements. The study highlights the effectiveness of IoT-based solutions in overcoming the limitations of conventional GWL monitoring. By integrating neural networks with real-time data acquisition, the proposed framework offers a novel method for predicting GWL in resource-constrained regions.
References
- Rabiei, J., Khademi, M. S., Bagherpour, S., Ebadi, N., Karimi, A., & Ostad-Ali-Askari, K. (2022). Investigation of fire risk zones using heat–humidity time series data and vegetation. Applied Water Science, 12(9), Article 216. https://doi.org/10.1007/s13201-022-01742-z
- Householder, J. E., & Page, S. (2022). Tropical peat swamp forests. In Encyclopedia of Inland Waters (pp. 105–115). https://doi.org/10.1016/b978-0-12-819166-8.00046-3
- Syaufina, L., & Maulana, S. I. (2021). Biomass burning emissions in Indonesia and policy measures—An overview. In Biomass Burning in South and Southeast Asia (pp. 135–148). CRC Press. https://doi.org/10.1201/9780429022036-11
- Vitolo, C., Di Giuseppe, F., Krzeminski, B., & San-Miguel-Ayanz, J. (2019). A 1980–2018 global fire danger re-analysis dataset for the Canadian fire weather indices. Scientific Data, 6(1), Article 190032. https://doi.org/10.1038/sdata.2019.32
- Nuruddin, A. A., Leng, H. M., & Basaruddin, F. (2006). Peat moisture and water level relationship in a tropical peat swamp forest. Journal of Applied Sciences, 6(11), 2517–2519. https://doi.org/10.3923/jas.2006.2517.2519
- Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peat-lands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67–78. https://doi.org/10.1016/j.gecco.2016.02.004
- Jebril, A., Sali, A., Ismail, A., & Rasid, M. (2018). Overcoming limitations of LoRa physical layer in image transmission. Sensors, 18(10), 3257. https://doi.org/10.3390/s18103257
- Li, L., Sali, A., Liew, J. T., Saleh, N. L., Ahmad, S. M. S., Ali, A. M., ... & Asai, N. (2022). Estimation of ground water level (GWL) for tropical peatland forest using machine learning. IEEE Access, 10, 126180–126187. https://doi.org/10.1109/ACCESS.2022.3225906
- Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21(4), 3039–3071. https://doi.org/10.1109/COMST.2019.2926625
- Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12(2), Article 024014. https://doi.org/10.1088/1748-9326/aa5b6f
- Paul, A., & Sato, T. (2017). Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenges. Journal of Sensor and Actuator Networks, 6(4), 24. https://doi.org/10.3390/jsan6040024
- Strumberger, I., Minovic, M., Tuba, M., & Bacanin, N. (2019). Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks. Sensors, 19(11), 2515. https://doi.org/10.3390/s19112515
- Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019). A review of machine learning and IoT in smart transportation. Future Internet, 11(4), 94. https://doi.org/10.3390/fi11040094
- Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449. https://doi.org/10.1109/TCE.2017.015063
- Periasamy, K., Periasamy, S., Velayutham, S., Zhang, Z., Ahmed, S. T., & Jayapalan, A. (2022). A proactive model to predict osteoporosis: An artificial immune system approach. Expert Systems, 39(4), e12708.
- Ahmed, S. T., Basha, S. M., Ramachandran, M., Daneshmand, M., & Gandomi, A. H. (2023). An edge-AI-enabled autonomous connected ambulance-route resource recommendation protocol (ACA-R3) for eHealth in smart cities. IEEE Internet of Things Journal, 10(13), 11497-11506.
- Kumar, S. S., Ahmed, S. T., Sandeep, S., Madheswaran, M., & Basha, S. M. (2022). Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques. Computers, Materials & Continua, 72(1).
- Pasha, A., Ahmed, S. T., Painam, R. K., Mathivanan, S. K., Mallik, S., & Qin, H. (2024). Leveraging ANFIS with Adam and PSO optimizers for Parkinson's disease. Heliyon, 10(9).
- Sreedhar, K. S., Ahmed, S. T., & Sreejesh, G. (2022, June). An Improved Technique to Identify Fake News on Social Media Network using Supervised Machine Learning Concepts. In 2022 IEEE World Conference on Applied Intelligence and Computing (AIC) (pp. 652-658). IEEE.
- Ahmed, S. T., Fathima, A. S., Nishabai, M., & Sophia, S. (2024). Medical ChatBot assistance for primary clinical guidance using machine learning techniques. Procedia Computer Science, 233, 279-287.
- Bangotra, D. K., Singh, Y., Selwal, A., Kumar, N., Singh, P. K., & Hong, W.-C. (2020). An intelligent opportunistic routing algorithm for wireless sensor networks and its application towards e-healthcare. Sensors, 20(14), 3887. https://doi.org/10.3390/s20143887
- Cenedese, A., Luvisotto, M., & Michieletto, G. (2017). Distributed clustering strategies in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 228–237. https://doi.org/10.1109/TII.2016.2628409
- Farag, H., Sisinni, E., Gidlund, M., & Österberg, P. (2019). Priority-aware wireless fieldbus protocol for mixed-criticality industrial wireless sensor networks. IEEE Sensors Journal, 19(7), 2767–2780. https://doi.org/10.1109/JSEN.2018.2888729
- Hikouei, I. S., EshCochrane, K. N., Saharjo, B. H., Graham, L. L. B., Applegate, G., & Cochrane, M. A. (2023). Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands. Science of the Total Environment, 857, Article 159701. https://doi.org/10.1016/j.scitotenv.2022.159701
- Burgan, H. I. (2022). Comparison of different ANN (FFBP, GRNN, RBF) algorithms and multiple linear regression for daily streamflow prediction in Kocasu River, Turkey. Fresenius Environmental Bulletin, 31(5), 4699–4708.
- Lendzioch, T., Langhammer, J., Vlček, L., & Minařík, R. (2021). Mapping the groundwater level and soil moisture of a montane peat bog using UAV monitoring and machine learning. Remote Sensing, 13(5), 907. https://doi.org/10.3390/rs13050907