RESEARCH ARTICLES
PUREFARM: A Data-Centric Precision Agriculture Solution for Climate-Resilient and Sustainable Crop Yield
Published 2025-12-08
Keywords
- Agricultural Technology,
- AI-Powered Solution,
- Sustainable Farming,
- Crop Yield Optimization,
- Supply Chain Management
- Market Transparency,
- Digital Agriculture ...More
How to Cite
R Tamilselvi, Monika, Shuhaina, Kavin, & Mathesh Kanna. (2025). PUREFARM: A Data-Centric Precision Agriculture Solution for Climate-Resilient and Sustainable Crop Yield. International Journal of Computational Learning & Intelligence, 5(1), 920–927. https://doi.org/10.5281/zenodo.17854627
Copyright (c) 2025 R Tamilselvi, Monika, Shuhaina, Kavin, Mathesh Kanna

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
This paper introduces PureFarm, a comprehensive AI-powered agricultural technology solution developed to address critical challenges faced by farmers, including low crop yield, unfair pricing, post-harvest spoilage, and limited sustainability practices. PureFarm, developed by Indigo Ag, leverages advanced AI and digital integration to expand its support for a broader farmer base. The solution provides real-time crop advisory, facilitates fair market access, and promotes sustainable farming through tools like a carbon footprint calculator and regenerative farming guidance. PureFarm aims to streamline farming workflows, improve financial outcomes for farmers, and drive greater environmental stewardship within the agricultural supply chain.References
- Zhang, Y., Wang, L., & Wang, X. (2021). Internet of Things-based smart agriculture: Technologies and future trends. Journal of Agricultural Informatics, 12(2), 45–58.
- Ray, P. P. (2017). Internet of Things for smart agriculture: Technologies, practices, and future roadmap. Journal of Ambient Intelligence and Humanized Computing, 8(4), 1–19.
- Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming: A review. Agricultural Systems, 153, 69–80.
- Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the applications of blockchain technology in the agriculture sector. Computers and Electronics in Agriculture, 153, 124–140.
- Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781
- Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
- Balasubramanian, V., & Reddy, P. (2020). IoT-based crop monitoring and automation system. International Journal of Scientific & Technology Research, 9(3), 1234–1240.
- Mahalakshmi, P., & Sundar, S. (2022). Smart farming using wireless sensor networks and cloud computing. International Journal of Advanced Research in Engineering and Technology, 13(1), 115–124.
- Valivarthi, D. T., Kethu, S. S., Natarajan, D. R., Narla, S., Peddi, S., & Kurunthachalam, A. (2025). Enhanced Medical Anomaly Detection Using Particle Swarm Optimization-based Hybrid MLP-LSTM Model. International Journal of Pattern Recognition and Artificial Intelligence. https://doi.org/10.1142/s0218001425570228.
- Optimizing Task Offloading in Vehicular Network (OTO): A Game Theory Approach Integrating Hybrid Edge and Cloud Computing. (2025). Journal of Cybersecurity and Information Management, 15(1). https://doi.org/10.54216/jcim.150110.
- Vallu, V. R., Pulakhandam, W., Kurunthachalam, A., & Hugar, S. (2025). PR-MICA and SGELNN: A Unified Framework for Feature Extraction in Graph Learning. 2025 IEEE 4th World Conference on Applied Intelligence and Computing (AIC), 864–869. https://doi.org/10.1109/aic66080.2025.11211928.
- Rao, V. V., Jagathpally, A., Pulakhandam, W., Shahwar, T., & Kurunthachalam, A. (2025). A Vision Transformers Approach for Surgical Monitoring with Algorithmic Framework and Experimental Evaluation. 2025 International Conference on Biomedical Engineering and Sustainable Healthcare (ICBMESH), 1–6. https://doi.org/10.1109/icbmesh66209.2025.11182237.
- Jadon, R., Budda, R., Gollapalli, V. S. T., Chauhan, G. S., Srinivasan, K., & Kurunthachalam, A. (2025). Grasp Pose Detection and Feature Extraction Using FHK-GPD and Global Average Pooling in Robotic Pick-and-Place Systems. 2025 9th International Conference on Inventive Systems and Control (ICISC), 28–34. https://doi.org/10.1109/icisc65841.2025.11188246.
- Vallu, V. R., Pulakhandam, W., & Kurunthachalam, A. (2025). Revolutionizing Mobile Cloud Security: Employing Secure Multi-Party Computation and Blockchain Innovations for E-Commerce Platforms. 2025 International Conference on Artificial Intelligence and Emerging Technologies (ICAIET), 1–6. https://doi.org/10.1109/icaiet65052.2025.11211015.
- Vallu, V. R., Pulakhandam, W., Jagathpally, A., Shahwar, T., & Kurunthachalam, A. (2025). Object Recognition and Collision Avoidance in Robotic Systems Using YOLO and HS-CLAHE Techniques. 2025 5th International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/conit65521.2025.11166833.
- Jadon, R., Budda, R., Gollapalli, V. S. T., Singh Chauhan, G., Srinivasan, K., & Kurunthachalam, A. (2025). Innovative Cloud-Based E-Commerce Fraud Prevention Using GAN-FS, Fuzzy-Rough Clustering, Smart Contracts, and Game-Theoretic Models. 2025 International Conference on Computing Technologies &Amp; Data Communication (ICCTDC), 1–6. https://doi.org/10.1109/icctdc64446.2025.11158048.
- Gayathri, R., Sheela Sobana Rani, K., & Aravindhan, K. (2024). Classification of Speech Signal Using CNN-LSTM. Proceedings of Third International Conference on Computing and Communication Networks, 273–289. https://doi.org/10.1007/978-981-97-2671-4_21.
- Ahmed, S. T., Kumar, V. V., Singh, K. K., Singh, A., Muthukumaran, V., & Gupta, D. (2022). 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Computers and Electrical Engineering, 102, 108210.
- Ahmed, S. T., Basha, S. M., Ramachandran, M., Daneshmand, M., & Gandomi, A. H. (2023). An edge-AI-enabled autonomous connected ambulance-route resource recommendation protocol (ACA-R3) for eHealth in smart cities. IEEE Internet of Things Journal, 10(13), 11497-11506.
- Ahmed, S. T., Kumar, V. V., & Jeong, J. (2024). Heterogeneous workload-based consumer resource recommendation model for smart cities: EHealth edge–cloud connectivity using federated split learning. IEEE Transactions on Consumer Electronics, 70(1), 4187-4196.
- Fathima, A. S., Basha, S. M., Ahmed, S. T., Mathivanan, S. K., Rajendran, S., Mallik, S., & Zhao, Z. (2023). Federated learning based futuristic biomedical big-data analysis and standardization. Plos one, 18(10), e0291631.