Mapping Precision Medicine Research: A Scientometric and Network Visualization Approach

Authors

  • Neha Thakur Department of Computer Science and Informatics, Central University of Himachal Pradesh, Dharamshala (HP), 176215, India
  • Pradeep Chouksey Department of Computer Science and Informatics, Central University of Himachal Pradesh, Dharamshala (HP), 176215, India
  • Parveen Sadotra Department of Computer Science and Informatics, Central University of Himachal Pradesh, Dharamshala (HP), 176215, India
  • Mayank Chopra Department of Computer Science and Informatics, Central University of Himachal Pradesh, Dharamshala (HP), 176215, India

DOI:

https://doi.org/10.5281/zenodo.15209312

Keywords:

Precision medicine, personalized healthcare, Digital twin, Deep learning, Artificial Intelligence (AI)

Abstract

In the realm of Precision medicine, it has been increasingly recognized that individuals affected by the same disease have intricate biological profiles. Precision medicine strives to enhance the health of patients by acquiring the most effective medicines based on individual variations in genes, including somatic and inherited. The field has endured rapid advancements prompted by technologies such as Big Data, Digital Twins, Artificial Intelligence, Deep Learning, and Data Analytics. This study employs quantitative approach to execute Sciento- metric Analysis of the articles indexed in the Web of Science Database. A searchingstring was generated through the selection of pertinent keywords, and certain parameters such as publishing year, research subject and financing organization were examined. The bibliometric networks were examined and visualized by employing software named VOSViewer. A total of 1352 papers were obtained between 2013 and 2022, with a notable surge in research output in 2019 and increased to 203-219 publications annually over the preceding three years. The most substantial disciplines in healthcare are genetics and healthcare science, which contributes to an upsurge in publications and citations. Genetic testing and genomic medicine are among the foremost recent trends in Precision medicine research. This paper provides the implementation, most recent trends, and worldwide study geography over the preceding ten years whichaid in determining preliminary research and providing recommendations for further studies.

References

Yang, Y., Siau, K., Xie, W., & Sun, Y. (2022). Smart health: Intelligent healthcare systems in the metaverse, artificial intelligence, and data science era. Journal of Organizational and End User Computing (JOEUC), 34(1), 1–14.

Tian, S., Yang, W., Le Grange, J. M., Wang, P., Huang, W., & Ye, Z. (2019). Smart healthcare: Making medical care more intelligent. Global Health Journal, 3(3), 62–65.

MacEachern, S. J., & Forkert, N. D. (2021). Machine learning for precision medicine. Genome, 64(4), 416–425.

Alshehri, F., & Muhammad, G. (2020). A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access, 9, 3660–3678.

Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep learning in medical imaging: General overview. Korean Journal of Radiology, 18(4), 570–584.

Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257.

Mauvais-Jarvis, F., Merz, N. B., Barnes, P. J., Brinton, R. D., Carrero, J.-J., DeMeo, D. L., De Vries, G. J., Epperson, C. N., Govindan, R., Klein, S. L., et al. (2020). Sex and gender: Modifiers of health, disease, and medicine. The Lancet, 396(10250), 565–582.

Gaziano, J. M., Concato, J., Brophy, M., Fiore, L., Pyarajan, S., Breeling, J., Whitbourne, S., Deen, J., Shannon, C., Humphries, D., et al. (2016). Million Veteran Program: A mega-biobank to study genetic influences on health and disease. Journal of Clinical Epidemiology, 70, 214–223.

Dewey, F. E., Murray, M. F., Overton, J. D., Habegger, L., Leader, J. B., Fetterolf, S. N., O’Dushlaine, C., Van Hout, C. V., Staples, J., Gonzaga-Jauregui, C., et al. (2016). Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science, 354(6319), aaf6814.

Aronson, S. J., & Rehm, H. L. (2015). Building the foundation for genomics in precision medicine. Nature, 526(7573), 336–342.

Wojcik, G. L., Graff, M., Nishimura, K. K., Tao, R., Haessler, J., Gignoux, C. R., Highland, H. M., Patel, Y. M., Sorokin, E. P., Avery, C. L., et al. (2019). Genetic analyses of diverse populations improves discovery for complex traits. Nature, 570(7762), 514–518.

Hartmaier, R. J., Albacker, L. A., Chmielecki, J., Bailey, M., He, J., Goldberg, M. E., Ramkissoon, S., Suh, J., Elvin, J. A., Chiacchia, S., et al. (2017). High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Research, 77(9), 2464–2475.

Hodson, R. (2016). Precision medicine. Nature, 537(7619), S49–S49.

Wang, Z.-G., Zhang, L., & Zhao, W.-J. (2016). Definition and application of precision medicine. Chinese Journal of Traumatology, 19(5), 249–250.

Shen, L., Li, Q., Wang, W., Zhu, L., Zhao, Q., Nie, Y., Zhu, B., Ma, D., Lin, X., Cai, X., et al. (2020). Treatment patterns and direct medical costs of metastatic colorectal cancer patients: A retrospective study of electronic medical records from urban China. Journal of Medical Economics, 23(5), 456–463.

Mosele, F., Remon, J., Mateo, J., Westphalen, C., Barlesi, F., Lolkema, M., Normanno, N., Scarpa, A., Robson, M., Meric-Bernstam, F., et al. (2020). Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Annals of Oncology, 31(11), 1491–1505.

Millner, L. M., & Strotman, L. N. (2016). The future of precision medicine in oncology. Clinics in Laboratory Medicine, 36(3), 557–573.

Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I. F., et al. (2019). Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: A Cancer Journal for Clinicians, 69(2), 127–157.

Kosorok, M. R., & Laber, E. B. (2019). Precision medicine. Annual Review of Statistics and Its Application, 6(1), 263–286.

van der Schee, M., Pinheiro, H., & Gaude, E. (2018). Breath biopsy for early detection and precision medicine in cancer. ecancermedicalscience, 12, ed84.

Johnson, K. B., Wei, W.-Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and Translational Science, 14(1), 86–93.

Le Texier, V., Henda, N., Cox, S., Saintigny, P., et al. (2019). Data sharing in the era of precision medicine: A scientometric analysis. Precision Cancer Medicine, 2.

Zou, J., Shah, O., Chiu, Y.-C., Ma, T., Atkinson, J. M., Oesterreich, S., Lee, A. V., & Tseng, G. C. (2024). Systems approach for congruence and selection of cancer models towards precision medicine. PLOS Computational Biology, 20(1), e1011754.

Gadade, D. D., Jha, H., Kumar, C., & Khan, F. (2024). Unlocking the power of precision medicine: Exploring the role of biomarkers in cancer management. Future Journal of Pharmaceutical Sciences, 10(1), 5.

Nijs, J., George, S. Z., Clauw, D. J., Fernández-de Las-Peñas, C., Kosek, E., Ickmans, K., Fernández-Carnero, J., Polli, A., Kapreli, E., Huysmans, E., et al. (2021). Central sensitisation in chronic pain conditions: Latest discoveries and their potential for precision medicine. The Lancet Rheumatology, 3(5), e383–e392.

Ong, E., Wang, L. L., Schaub, J., O’Toole, J. F., Steck, B., Rosenberg, A. Z., Dowd, F., Hansen, J., Barisoni, L., Jain, S., et al. (2020). Modelling kidney disease using ontology: Insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 16(11), 686–696.

Ho, D. S. W., Schierding, W., Wake, M., Saffery, R., & O’Sullivan, J. (2019). Machine learning SNP based prediction for precision medicine. Frontiers in Genetics, 10, 267.

Soto, F., Wang, J., Ahmed, R., & Demirci, U. (2020). Medical micro/nanorobots in precision medicine. Advanced Science, 7(21), 2002203.

Ho, D., Quake, S. R., McCabe, E. R., Chng, W. J., Chow, E. K., Ding, X., Gelb, B. D., Ginsburg, G. S., Hassenstab, J., Ho, C.-M., et al. (2020). Enabling technologies for personalized and precision medicine. Trends in Biotechnology, 38(5), 497–518.

Nalawansha, D. A., & Crews, C. M. (2020). PROTACs: An emerging therapeutic modality in precision medicine. Cell Chemical Biology, 27(8), 998–1014.

Dainis, A. M., & Ashley, E. A. (2018). Cardiovascular precision medicine in the genomics era. JACC: Basic to Translational Science, 3(2), 313–326.

Ginsburg, G. S., & Phillips, K. A. (2018). Precision medicine: From science to value. Health Affairs, 37(5), 694–701.

Katoh, M. (2016). FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis. International Journal of Molecular Medicine, 38(1), 3–15.

Malone, E. R., Oliva, M., Sabatini, P. J., Stockley, T. L., & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12, 1–19.

Daly, B., & Olopade, O. I. (2015). A perfect storm: How tumor biology, genomics, and health care delivery patterns collide to create a racial survival disparity in breast cancer and proposed interventions for change. CA: A Cancer Journal for Clinicians, 65(3), 221–238.

Rumsfeld, J. S., Joynt, K. E., & Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: Promise and challenges. Nature Reviews Cardiology, 13(6), 350–359.

Chambers, D. A., Feero, W. G., & Khoury, M. J. (2016). Convergence of implementation science, precision medicine, and the learning health care system: A new model for biomedical research. JAMA, 315(18), 1941–1942.

Golubnitschaja, O., Baban, B., Boniolo, G., Wang, W., Bubnov, R., Kapalla, M., Krapfenbauer, K., Mozaffari, M. S., & Costigliola, V. (2016). Medicine in the early twenty-first century: Paradigm and anticipation—EPMA position paper 2016. EPMA Journal, 7(1), 23.

Chen, R., & Snyder, M. (2013). Promise of personalized omics to precision medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(1), 73–82.

van der Wouden, C. H., Cambon-Thomsen, A., Cecchin, E., Cheung, K.-C., Dávila-Fajardo, C. L., Deneer, V. H., Dolžan, V., Ingelman-Sundberg, M., Jönsson, S., Karlsson, M. O., et al. (2017). Implementing pharmacogenomics in Europe: Design and implementation strategy of the Ubiquitous Pharmacogenomics Consortium. Clinical Pharmacology & Therapeutics, 101(3), 341–358.

Aimar, A., Palermo, A., & Innocenti, B. (2019). The role of 3D printing in medical applications: A state of the art. Journal of Healthcare Engineering, 2019(1), 5340616.

König, I. R., Fuchs, O., Hansen, G., von Mutius, E., & Kopp, M. V. (2017). What is precision medicine? European Respiratory Journal, 50(4).

Newman, L. A., & Kaljee, L. M. (2017). Health disparities and triple-negative breast cancer in African American women: A review. JAMA Surgery, 152(5), 485–493.

Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., & Herrera, F. (2009). h-index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), 273–289.

Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69, 169–173.

Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint, arXiv:1109.2058.

Zhu, Z., Albadawy, E., Saha, A., Zhang, J., Harowicz, M. R., & Mazurowski, M. A. (2019). Deep learning for identifying radiogenomic associations in breast cancer. Computers in Biology and Medicine, 109, 85–90.

Bibault, J.-E., Giraud, P., Housset, M., Durdux, C., Taieb, J., Berger, A., Coriat, R., Chaussade, S., Dousset, B., Nordlinger, B., et al. (2018). Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Scientific Reports, 8(1), 12611.

Trivizakis, E., Manikis, G. C., Nikiforaki, K., Drevelegas, K., Constantinides, M., Drevelegas, A., & Marias, K. (2018). Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation. IEEE Journal of Biomedical and Health Informatics, 23(3), 923–930.

Croatti, A., Gabellini, M., Montagna, S., & Ricci, A. (2020). On the integration of agents and digital twins in healthcare. Journal of Medical Systems, 44(9), 161.

Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J. F., Bukhari, H. A., Wajdan, A., et al. (2020). The “digital twin” to enable the vision of precision cardiology. European Heart Journal, 41(48), 4556–4564.

Lareyre, F., Adam, C., Carrier, M., & Raffort, J. (2020). Using digital twins for precision medicine in vascular surgery. Annals of Vascular Surgery, 67, e577–e578.

Duarte, T. T., & Spencer, C. T. (2016). Personalized proteomics: The future of precision medicine. Proteomes, 4(4), 29.

Guan, X., Qin, T., & Qi, T. (2022). Precision medicine in lung cancer theranostics: Paving the way from traditional technology to advance era. (Publication details incomplete—consider adding journal or publisher info).

Ahmed, S. T., Kaladevi, A. C., Shankar, A., & Alqahtani, F. (2025). Privacy Enhanced Edge-AI Healthcare Devices Authentication: A Federated Learning Approach. IEEE Transactions on Consumer Electronics.

Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky-Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials, 32(13), 1901989.

Dlamini, Z., Francies, F. Z., Hull, R., & Marima, R. (2020). Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and Structural Biotechnology Journal, 18, 2300–2311.

Downloads

Published

2025-04-14

How to Cite

Neha Thakur, Pradeep Chouksey, Parveen Sadotra, & Mayank Chopra. (2025). Mapping Precision Medicine Research: A Scientometric and Network Visualization Approach. International Journal of Human Computations & Intelligence, 4(2), 411–430. https://doi.org/10.5281/zenodo.15209312