Integrating Artificial Intelligence & IoT for Precision Farming: Advancing Agriculture 4.0 Solutions
DOI:
https://doi.org/10.5281/zenodo.15554607Keywords:
Precision Farming, Artificial Intelligence (AI), Internet of Things (IoT), Drones, Smart Sensors, Data SecurityAbstract
Agriculture 4.0 represents a revolutionary change in current farming methods, made possible by state-of- the art technologies including AI, IoT, etc. This technology driven farming is called precision farming, which attempts to improve the operations and maximize the yields of agriculture and minimize the waste, while taking care of sustainable farming. In this paper we discuss the role of AI and IoT in precision agriculture, with a particular focus on the structure of smart farming systems, significant technical aspects, and examples of use in the real world. It also discusses the difficulties and future directions of AI-IoT convergence in agriculture, such as data security, connectivity, and scalability.
References
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2020.3003910
Dogiwal, S., Dadheech, P., Kumar, A., Raja, L., Kumar, A., & Beniwal, M. (2021). An automated optimize utilization of water and crop monitoring in agriculture using IoT. IOP Conference Series: Materials Science and Engineering, 1131(1), 012019. https://doi.org/10.1088/1757-899X/1131/1/012019
Linaza, M. T., et al. (2021). Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy, 11(6), 1227. https://doi.org/10.3390/agronomy11061227
Babenko, V., & Nehrey, M. (2021). Digital agriculture innovation: Trends and opportunities. In Innovation in Agriculture (Chapter 6). https://doi.org/10.1201/9781003028932-6
Araújo, S. O., Peres, R. S., Barata, J., Lidon, F. C., & Ramalho, J. C. (2021). Characterising the Agriculture 4.0 landscape—Emerging trends, challenges and opportunities. Agronomy, 11(4), 667. https://doi.org/10.3390/agronomy11040667
Mandal, M., Paramanik, B., Sarkar, A., & Mahata, D. (2021). Precision farming in floriculture. International Journal of Research, 9(1), 135–139. https://doi.org/10.29121/granthaalayah.v9.i1.2021.2871
Naresh, R. K., et al. (2020). The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A review. Current Journal of Applied Science and Technology, 39(48), 65–77. https://doi.org/10.9734/cjast/2020/v39i4831205
Kaur, H. (2020). The role of Internet of Things in agriculture. In Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC). https://doi.org/10.1109/ICOSEC49089.2020.9215460
Priya, P., & Kaur, G. (2021). Smart sensors for smart agriculture. In Smart Agriculture: An Approach Toward Better Agriculture Management (Chapter 11). https://doi.org/10.4018/978-1-7998-1722-2.ch011
T, B., & G, S. (2020). Development of IoT-based agribot for farm monitoring. Journal of Emerging Technologies and Innovative Research, 7(1), 61–66.
Bhattacharya, M., Roy, A., & Pal, J. (2021). Smart irrigation system using Internet of Things. In Smart and Sustainable Engineering for Next-Generation Applications (pp. 131–143). https://doi.org/10.1007/978-981-15-6198-6_11
Milics, G. (2019). Application of UAVs in precision agriculture. In Trends in Agriculture and Soil Pollution Research (pp. 177–192). https://doi.org/10.1007/978-3-030-03816-8_13
Ennouri, K., Triki, M. A., & Kallel, A. (2020). Applications of remote sensing in pest monitoring and crop management. In Advances in Remote Sensing for Natural Resource Monitoring (pp. 85–96). https://doi.org/10.1007/978-981-13-9431-7_5
Tang, J. (2021). GIS fundamentals for agriculture. In GIS and Geostatistical Techniques for Groundwater Science (pp. 33–50). https://doi.org/10.1007/978-3-030-66387-2_3
Kumar, V., Kathuria, S., Gehlot, A., & Duggal, A. S. (2023). Precision agriculture using Internet of Things and wireless sensor networks. In International Conference on Database Theory (ICDT). https://doi.org/10.1109/ICDT57929.2023.10150678
Ahmad, S. F., & Dar, A. H. (2020). Precision farming for resource use efficiency. In Precision Agriculture Technologies for Food Security and Sustainability (pp. 33–47). https://doi.org/10.1007/978-981-15-6953-1_4
Gupta, P. (2023). Precision agriculture application using machine learning. International Journal of Advanced Research in Science, Communication and Technology, 23(1), 186–191. https://doi.org/10.48175/ijarsct-9463
Bhat, S. A., Geelani, S. M., Dijoo, Z. K., Bhat, R. A., & Khanday, M. U. D. (2021). Sustainable agricultural practices. In Agri-Informatics (pp. 121–137). https://doi.org/10.1007/978-3-030-61010-4_8
Holla, R. R., T, B., P, S., M, S., & N, S. N. (2022). AI-based farmer’s assistant. International Research Journal of Computer Science, 9(8), 10–14. https://doi.org/10.26562/irjcs.2022.v0908.003
Balamurugan, S., Ayyasamy, A., & Joseph, K. S. (2020). IoT-based supply chain traceability using enhanced Naive Bayes approach for scheming the food safety issues. International Journal of Scientific & Technology Research, 9(3), 7166–7170.
Chhetri, N. (2012). Adapting agriculture to climate variability and change: Capacity building through technological innovation. https://doi.org/10.5772/29757
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2022, October). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem. https://doi.org/10.1016/j.aac.2022.10.001
(2022, October). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly. https://doi.org/10.1016/j.giq.2021.101624
Ratnaparkhi, S., et al. (2020, December). Smart agriculture sensors in IoT: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.138
Yaqot, M., & Menezes, B. C. (2021, August). Unmanned aerial vehicle (UAV) in precision agriculture: Business information technology towards farming as a service. https://doi.org/10.1109/ESMARTA52612.2021.9515736
Kumar, K. P., & Muralidhar, M. (2018, July). Artificial intelligence-based automatic irrigation system using IoT. Journal of Emerging Technologies and Innovative Research.
Ranjan, S., Kaur, M., Singh, K. A., Singh, K. A., Rakesh, N., & Goyal, M. (2022, November). IoT-based rural farming and education infrastructure. https://doi.org/10.1109/ICFIRTP56122.2022.10063184
Oweiss, K. (2022, March). Cyber secure framework for smart agriculture: Robust and tamper-resistant authentication scheme for IoT devices. Electronics, 11(6), 963. https://doi.org/10.3390/electronics11060963
(2022, November). Internet of things (IoT) in agriculture. https://doi.org/10.1109/icccs55188.2022.10079313
Le Galès, P. (2023). Connected sensors for a smart green farm. In Smart Agriculture Technologies (pp. 423–439). https://doi.org/10.1007/978-3-031-21216-1_23
(2022, November). Intelligent drone-based IoT technology for smart agriculture system. https://doi.org/10.1109/icdsic56987.2022.10076170
Islam, S., Jamwal, S., & Mir, M. (2022, October). Fog data processing and analytics for agriculture IoT data streams. International Journal of Next-Generation Computing, 13(3). https://doi.org/10.47164/ijngc.v13i3.870
(2022, September). Edge computing on IoT. In Advances in Systems Analysis, Software Engineering, and High Performance Computing. https://doi.org/10.4018/978-1-6684-5722-1.ch004
(2022). Decision-making system for crop selection based on soil. https://doi.org/10.1016/B978-0-12-823694-9.00032-3
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020, January). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002
Pattanayak, S., et al. (2021, June). AI and IoT based smart irrigation system. Turkish Online Journal of Qualitative Inquiry.
(2023, January). AI-based pest detection and alert system for farmers using IoT. E3S Web of Conferences, 387, 05003. https://doi.org/10.1051/e3sconf/202338705003
Tawade, A., & Patil, T. (2021, May). An exploratory study of applications of machine learning in crop yield prediction: A review. Social Science Research Network. https://doi.org/10.2139/ssrn.3868706
Hashni, T., Amudha, T., & Ramakrishnan, S. (2022, June). IoT & AI in smart farming: Implications and challenges. In 2022 7th International Conference on Communication and Electronics Systems (ICCES). https://doi.org/10.1109/icces54183.2022.9835812
(2023, March). User privacy in IoT. In Advances in Information Security, Privacy, and Ethics. https://doi.org/10.4018/978-1-6684-6914-9.ch012
Simanjuntak, N. (2023). Internet of Things in agriculture industry: Implementation, applications, challenges and potential. In Digital Agriculture Transformation (pp. 513–525). https://doi.org/10.1007/978-981-99-0412-9_29
Ahmed, S. T., Elngar, A. A., & Ravi, L. (2024). Guest Editorial: Recent Advances, Challenges and Future Trends in EHealth Informatics. Journal of Information Technology Management, 16(1), 1-4.
LK, S. S., Rana, M., & Ahmed, S. T. (2021, November). Real-time iot based temperature and npk monitoring system sugarcane-crop yield for increasing. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-5). IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Parveen Sadotra, Pradeep Chouksey, Mayank Chopra, Neha Thakur, Gaurav Thakur, Sankait Gupta, Rabia Koser

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.