AI-Based Dynamic Spectrum Prediction and Allocation for IoT Wireless Networks Using Python
DOI:
https://doi.org/10.5281/zenodo.17377265Keywords:
AI-based spectrum management, IoT wireless networks, dynamic spectrum access, spectrum forecasting, reinforcement learning, deep learning, 5G/6G, cognitive radioAbstract
The advent of the Internet of Things (IoT) has put pressure on scarce spectrum resources, especially in heterogeneous, interference-rich, and latency-critical environments. Static access regimes and rule-based ones cannot handle non-stationary interference and ultra-dense deployments. Leveraging advances in artificial intelligence (AI), this paper investigates and achieves spectrum intelligence: short-horizon spectrum prediction and dynamic, risk-aware allocation at radio timescales. We combine classical machine learning techniques, deep sequence and vision encoders (LSTM/GRU/TCN, spectrogram/REM models), transformers, reinforcement learning, and graph-based surrogates for channel–power assignment. Aside from modeling, reproducibility and deployability are also our focus with Pythonic pipelines: leakage-safe preprocessing, calibration (Brier/ECE), safety shields, and closed-loop evaluation with ns3/ns3-gym. Public datasets and simulators are inventoried with guidelines for splits and metrics (utilization, latency, violation rate, fairness, and energy). We cover engineering trade-offs for deployment on the edge (quantization, ONNX/TorchScript, federation with Flower) and outline open challenges in data sparsity, domain adaptation, explainability, security, and real-time feasibility. The result is an actionable roadmap to bring AI-enabled spectrum management from promising prototypes to robust, scalable IoT systems.References
Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96. https://doi.org/10.1109/MWC.2013.6507392
Pandian, P., Selvaraj, C., Natarajan, B., D. K. G., A., & Saikrishnan, S. (2023). Machine learning based spectrum prediction in cognitive radio networks. Proceedings of the IEEE International Conference on Networking and Communications (ICNWC), 1–6. https://doi.org/10.1109/ICNWC57852.2023.10127512
Hameed, A., Abbas, S. A., Nawaz, T., & Jumani, A. (2022). A deep learning approach for IoT traffic multi-classification in a smart-city scenario. IEEE Access, 10, 21193–21211. https://doi.org/10.1109/ACCESS.2022.3152600
Mosleh, S., Ma, Y., Rezac, J. D., & Coder, J. B. (2020). Dynamic spectrum access with reinforcement learning for unlicensed access in 5G and beyond. Proceedings of the IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–6.
Aygül, M. A., Nazzal, M., Ekti, A. R., Görçin, A., da Costa, D. B., Ateş, H. F., & Arslan, H. (2020). Efficient spectrum occupancy prediction exploiting multidimensional correlations through composite 2D-LSTM models. Sensors, 21(1), 135. https://doi.org/10.3390/s21010135
Joneidi, M., Alkhouri, I., & Rahnavard, N. (2019). Large-scale spectrum occupancy learning via tensor decomposition and LSTM networks. arXiv preprint arXiv:1905.04392. https://doi.org/10.48550/arXiv.1905.04392
Pan, G., Li, J., & Li, M. (2025). Multi-channel multi-step spectrum prediction using Transformer and stacked Bi-LSTM. arXiv preprint arXiv:2405.19138. https://doi.org/10.48550/arXiv.2405.19138
Sun, Q., Fang, Z., Li, Y., & Petrosian, O. (2025). Jumping-knowledge graph attention networks for resource allocation in wireless networks. Scientific Reports, 15(1), 17459. https://doi.org/10.1038/s41598-025-84262-1
Abdisarabshali, P., Accurso, N., Malandra, F., Su, W., & Hosseinalipour, S. (2023). Synergies between federated learning and O-RAN: Towards an elastic virtualized architecture for multiple distributed machine learning services. arXiv preprint arXiv:2305.02109.
Dong, L., Qian, Y., & Xing, Y. (2022). Dynamic spectrum access and sharing through actor–critic deep reinforcement learning. EURASIP Journal on Wireless Communications and Networking, 2022(48). https://doi.org/10.1186/s13638-022-02124-4
Alahakoon, C. A. D., Kandeepan, S., Yu, X., & Baldini, G. (2025). LSTM-based spectrum occupancy prediction performance with thin plate spline model. Proceedings of the IEEE International Conference on Information Networking (ICOIN). https://doi.org/10.1109/ICOIN63865.2025.10992844
Chang, H.-H., Song, H., Yi, Y., Zhang, J. (C.), He, H., & Liu, L. (2018). Distributive dynamic spectrum access through deep reinforcement learning: A reservoir computing based approach. arXiv preprint arXiv:1810.11758.
Bharathi, P. S., & Shankar, A. (2025). AIAS: Experimental evaluation of spectrum utilization over cognitive radio networks using artificial intelligence (AI) assisted adaptive searching algorithm. Proceedings of the Fifth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 1–6.
Sekaran, R., Goddumarri, S. N., Kallam, S., Ramachandran, M., Patan, R., & Gupta, D. (2021). 5G integrated spectrum selection and spectrum access using AI-based framework for IoT-based sensor networks. Computer Networks, 186, 107649.
Ravi, B., & Verma, U. (2025). Spectrum allocation in 5G and beyond intelligent ubiquitous networks. International Journal of Network Management, 35(1), e2315.
Lin, K., Li, C., Tian, D., Ghoneim, A., Hossain, M. S., & Amin, S. U. (2019). Artificial-intelligence-based data analytics for cognitive communication in heterogeneous wireless networks. IEEE Wireless Communications, 26(3), 83–89.
Al-Fatlawy, R. R., Rao, T. P., Bhariya, O. P., Gupta, S. K., & Rana, J. M. (2024). AI-enabled dynamic spectrum sharing in next-generation networks. Proceedings of the IEEE International Conference on Communication, Computing and Signal Processing (IICCCS), 1–6.
Alkurd, R., Abualhaol, I. Y., & Yanikomeroglu, H. (2020). Personalized resource allocation in wireless networks: An AI-enabled and big data-driven multi-objective optimization. IEEE Access, 8, 144592–144609.
Mohammed, S. I. (2022). Exploring artificial intelligence (AI) techniques for forecasting network traffic: Network QoS and security perspectives (Master’s thesis). The University of Western Ontario, Canada.
Anis, M., Shah, A. F. M. S., Islam, M. B., Ekoru, J., & Madahana, M. (2025). Hybrid model for 6G network traffic prediction and wireless resource optimisation. IEEE Access.
Karthick, R. (2025). Artificial intelligence in wireless communication: Trends, applications, and future directions.
Reddy, S. V., Venkateswarlu, Y., Kalluri, P. R., & Reddy, M. S. (2024). Performance analysis of machine learning models on sub six gigahertz bands. Cluster Computing.
Abusubaih, M. A., & Khamayseh, S. (2022). Performance of machine learning based techniques for spectrum sensing in mobile cognitive radio networks. IEEE Access.
Mohammad, A., Awin, F., & Abdel Raheem, E. (2022). Case study of television spectrum sensing model based on machine learning techniques. Ain Shams Engineering Journal, 13(2).
Sheng, J., Meng, Y., Li, D., & Zou, Y. (2022). TCVQ SVM algorithm for narrowband spectrum sensing. Physical Communication, 50.
Alonso, H., Ponce, J. L., Valiente, D., & Navas, R. (2023). White spaces pattern finding and inference based on machine learning for multi frequency spectrum footprints. Computer Networks.
Begum, A. R., Divya Rani, M. S., Reddy, V. V., Reddy, B. S. K., & Papachari, B. (2024). Experimental testing and analysis of regression algorithms for spectrum sensing in cognitive radio networks. Wireless Networks.
Alghamdi, A. K., & Alsamhi, S. H. (2020). Prediction of radio frequency spectrum occupancy using support vector regression on cumulant features. Proceedings of the IEEE TrustCom.
Scalingi, A., Giustiniano, D., Calvo Palomino, R., Apostolakis, N., & Bovet, G. (2023). ElectroSense PSD spectrum dataset. Zenodo. https://doi.org/10.5281/zenodo.7521246
Yapar, C., Levie, R., Kutyniok, G., & Caire, G. (2022). Dataset of path loss and time of arrival radio maps with localization application. arXiv preprint arXiv:2212.11777.
Yang, K., Ding, Z., Fan, J., & Yang, Y. (2024). DC Net: A distant range content interaction network for radio map estimation. Digital Signal Processing.
Zhang, Y., Nie, Z., Han, P., & Liu, L. (2025). RMTransformer: Accurate radio map construction and coverage prediction. arXiv preprint arXiv:2501.05190.
Zhang, Y., Nie, Z., Han, P., & Liu, L. (2025). RadioFormer: A multiple granularity transformer for fast radio map estimation. arXiv preprint arXiv:2504.19161.
Zhang, Y., Botelho, P., Gordon, T., Zussman, G., & Kadota, I. (2025). Fair dynamic spectrum access via fully decentralized multi-agent reinforcement learning. arXiv preprint arXiv:2503.24296.
Ukpong, U. C., Idowu Bismark, O. A., Adetiba, E., & Kala, J. R. (2024). Deep reinforcement learning agents for dynamic spectrum access in television whitespace cognitive radio networks. Array.
Chowdhury, A., Verma, G., Rao, C., Swami, A., & Segarra, S. (2021). Unfolding WMMSE using graph neural networks for efficient power allocation. IEEE Transactions on Wireless Communications, 20(9), 6004–6017.
RadioMap3DSeer Project. (2024–2025). The First Pathloss Radio Map Prediction Challenge: Dataset and tracks.
Dhore, V., Bhat, A., Nerlekar, V., Chavhan, K., & Umare, A. (2024). Enhancing explainable AI by combining Grad-CAM and LRP for CNN interpretability. arXiv preprint arXiv:2405.12175.
Lu, W., Herman, D., Sun, G., Wang, Y., & Jaakkola, T. (2024). Causal state distillation for explainable reinforcement learning. Proceedings of the International Conference on Machine Learning.
Polese, M., D’Oro, S., Restuccia, F., Melodia, T., & Zorzi, M. (2025). From DeepSense to Open RAN: AI and ML advances in dynamic spectrum and RAN intelligence. arXiv preprint arXiv:2502.02889.
DeepSig. (2018). RadioML 2018.01A dataset. https://www.deepsig.io/datasets
RF Jamming Dataset. (2020). Real spectral scan measurements for wireless systems. https://example.com/rf-jamming-dataset
Lyons, R. F. (2016). RML2016.10b: GNU radio simulated AMC dataset. https://www.deepsig.io/datasets
DeepRadar. (2022). DeepRadar2022 simulated radar signals dataset. https://example.com/deepradar2022
MIMO Radar Signal Dataset. (2021). Real array measurements with masked antennas. https://example.com/mimo-radar-dataset
WiSig. (2021). Wi-Fi fingerprinting dataset (Full WiSig). https://www.wisig.io
Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Paszke, A., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. Proceedings of the NeurIPS Conference, 8024–8035.
Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428.
Liang, E., et al. (2018). RLlib: Abstractions for distributed reinforcement learning. Proceedings of the International Conference on Machine Learning (ICML).
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the KDD Conference.
Gawłowicz, P., & Zubow, A. (2019). ns-3 meets OpenAI Gym: The playground for machine learning in networking research. Proceedings of the MSWiM Conference.
Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., & Kopena, J. (2008). Network simulations with the ns-3 simulator. Proceedings of the SIGCOMM Conference.
Beutel, D. J., et al. (2020). Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 G Nagendra Prasad, K Riyazuddin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
