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Abstract – Detecting diseases in the brain at early stages or proper diagnosis and treatment of 
tumor in the brain are perhaps the biggest challenges facing medical sciences. New 
advancement in Machine Learning has developed novel methods for augmenting accuracy and 
effectiveness of detecting brain tumors based on image obtained through MRI scans. This 
review goes in-depth analysis of how detection and classification is currently improving, 
highlighting such techniques involving SVM, CNNs, ResNet, and Xception. Key spatial and 
textural feature extraction techniques, like PCA, HOG, and GLCM, have also been considered 
in order to improve the classification performance. Ensemble approaches, such as Random 
Forest, have been taken into consideration for handling the complexity of the dataset. The study 
evaluates the benefits, limitations, and clinical applicability of these methods in view of the 
challenges posed by diverse datasets, high computational demands, and generalization issues. 
Further research and development are required to make the machine-learning diagnostic 
capabilities of brain-related conditions more reliable and practical. 

Index Terms – CNN, Deep Learning, Machine Learning, SVM, Brain Tumor. 

I. INTRODUCTION 

Brain tumors constitute some of the most critical health problems that both adults and children face 
globally. Brain tumors can be broadly categorized into two types: benign or nonmalignant, and malignant or 
cancerous. The appropriate treatment of the patient and the enhanced outcome are highly dependent on the 
accurate and early diagnosis of brain tumors. The prototypical images for identifying abnormalities in the 
human brain were MRI and CT scans, of which MRI is highly preferred because of superior soft tissue contrast 
and high resolution. This review is on the advances and the potential applications in medical diagnostics for 
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detection and classification of brain tumors using MRI and other medical imaging modalities through machine 
learning. The current methods of diagnosis, though highly sensitive and specific, are so cumbersome that 
observer variability exists. Such ML-based systems want greater accuracy at the expense of diagnostic effort. 
Basic theories, critical developments under development, and methodologies used to guide recent work are 
presented in this review in reflection of their implications for clinical work. 

A. Background of the Study 

Indeed, brain tumors are the most dangerous and exigent diseases that endanger humanity.  
Meningioma is the most prevalent among the nonmalignant tumors that fall into this classification, and 
glioblastoma is most common malignant brain and central nervous system tumor in the United States of 
America. Statistics indicate that the 5-year survival rate for malignant CNS tumors is 23.5%; several studies 
put it up to 35.8%, meanwhile it is 82.4 in the case of non-malignant CNS tumors, mostly due to the average 
of 24.71 cases per 100,000 U.S. citizens every year [1][2][3]. There is a pertained high incidence of malignant 
tumor in brain and central nervous systems. Among these tumors, glioblastomas and meningiomas are the 
commonest in the United States. In fact, one of the malignancies' five-year survival rates for brain tumors is 
66.9% compared to nonmalignant brain tumors' 92.1% being much better [4]. According To Jhons Hopkins 
Medicine (http://www.hopkinsmedicine.org/health/conditions-and-diseases/gliomas) Gliomas being the most 
common type of brain tumor can be seen from the incidence that they account for 33% of all brain tumors. 
The tumors are classified as malignant. These are subtypes of astrocytomas, oligodendrogliomas, and 
ependymomas. Astrocytoma in which one subtype particularly aggressive with an unfavorable prognosis is 
glioblastoma multiforme (GBM). Glioblastomas account for 49% of all gliomas [5]. Nevertheless, the most 
striking is that regardless of the improvement in treatment, the 5-year survival rate for GBM remains at about 
6.8%. Early and precise diagnosis is very beneficial in deciding how to manage the patient and in raising 
survival rates while reducing health risks. However, more traditional diagnostic techniques including MRI 
and CT scans demand a lot of time and are subjective with a very high observer variability. Currently, on these 
bases, ML and DL have become alternatives for automating and improving the accuracy in the tumor 
detections. However, interpretability, lack of balanced datasets and computational inefficiency are limitations 
in applying them in clinical settings. 

B. Problem Statement 

However, in the recent most improved ML techniques in brain tumor detection, there are eminent 
challenges such as small and imbalanced training sets, the complex nature of the 3D imaging data, and 
limitations of model transparency restricting clinical trust and usability. To this end, the gaps must be narrowed 
to provide scalable, efficient, and interpretable models that will generalize to a variety of real-world settings 
using multimodal imaging data. 

C. Research Questions 

• In what ways can highly advanced ML models enhance the accuracy and scalability of brain tumor 
detectors? 

• What strategies do we have to alleviate the limitations of data imbalance, interpretation deprivation, 
and computational ineffects?  
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• Do multimodal imaging approaches improve the robustness of tumor classification models? 

 

D. Objectives 

• Designing an ML framework, keeping in mind the available top-class models such as CNN, ResNet, 
and U-Net to detect a tumor. 

• To address the challenge of the dataset with or through data augmentation and/or transfer learning and 
synthetic data generation. 

• Combining MRI between modalities such as CT and PET, is a mode through which one can explore 
multimodal imaging for improving diagnostic outcomes. 

• Benchmarking these said models with those done previously and applying these models on real-world 
datasets to validate them. 

 
Fig. 1:  Distribution of Malignant and Non-Malignant Brain Tumor 
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Fig. 2: Distribution of Different Type of Non-Malignant Brain Tumor 

E. Scope 

This article talks about the challenge of brain tumor detection by employing machine learning (ML) 
and deep learning (DL) techniques. This article discusses the advanced machine learning methods in terms of 
Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) along with the latest 
architectures' specifics like U-Net and ResNet on tumor classification and segmentation. More significantly, 
feature extraction techniques presented by the article are enhancement measures that support a model's 
performance, and include Histogram of Oriented Gradients (HOG), Principal Component Analysis (PCA), 
and Gray-Level Co-occurrence Matrix (GLCM).It also attempts to outline possible future directions in 
research that would complement and build upon previous indexed studies: identification of shortcomings 
present in current studies including insufficient number of datasets, imbalance class modeling and certain 
computational inefficiencies plus issues regarding the interpretability of these incomplete DL models which 
refrain them from being rightly applied into the clinical scenario. As illustrated multilayout imaging 
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promising towards broader reliable and scalable ML frameworks.Inspection of explained artificial intelligence 
to fill the void between ML technologies and its usage in the medical arena through rendering models more 
transparent for and trusted by the health professionals. Much in line with research problems and objectives 
specified, this paper attempts to provide recommendations at a practicable level to begin addressing current 
challenges and outlines future avenues to develop efficient, interpretable, and clinically applicable ML-based 
systems for detecting brain tumors. 
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II. LITERATURE REVIEW 

Vani et al. finally presented a mechanism for automatic classification of brain MRI images based on 
prediction of brain disease. Histogram of Oriented Gradients (HOG) was specifically used as a feature 
extraction process while Support Vector Machine (SVM) was used for classification. Traditional approaches 
often had an unnecessary heavy manual intervention, which is a time-consuming way and prone to errors in 
finding brain abnormalities. The system demonstrated here achieved a classification accuracy of 85%,between 
diseased and not diseased cases. The method had four major steps: collect data, preprocess, extract features, 
and classify. In fact, from the very beginning, the MRI data was taken from several sources and divided into 
two parts: healthy and diseased cases. The learning algorithm watches the patterns of what initially differs 
from the actual tissue. After Preprocessing, high-quality images were segmented as well as anonymized health 
records. HOG has been utilized to extract features from MRI images which show the pattern focused on brain 
disease. In this study, feature extraction is followed up by using the SVM model to predict whether disease 
exists based on the features that were extracted. Results indicated that HOG-SVM combinations could also 
classify brain MRIs at an accuracy of 85%, thus showing the promising potential of the combination in 
speeding the workflow of diagnostics. Speeding disease detection time and increasing accuracy, this will 
improve overall patient management and care. However, some open limitations remained-the dataset has 
restricted diversity and the HOG feature extraction was limited in its application. The dataset is to be enlarged 
progressively in the future and feature extractions need to be done in a much more accurate manner to improve 
the classification accuracy and reliability [7]. 

An innovative method of classification and demarcation of brain CT strokes using a explainable ViT 
based paradigm by Katar et al has showcased. However, state of the art stroke diagnosis on CT images, either 
in the automated mode or in that which could be explainable, still fails when regions of involvement are to be 
pinpointed. This study indicates an approach to tackle such challenges using the ViT architecture with data 
augmentation to train high performance in the accuracy and efficiency of such a model. Implementation on 
the proposed model included a database of 6651 brain CT images, 4427 normal images and 2224 stroke images 
contributed by the Ministry of Health of Republic of Turkey. Notably, the model considered two training 
setups on the imbalanced raw data, whereby the ViT model is first trained without any balancing intervention 
on the raw dataset and then data is augmented by generating synthetic images for training the model. Patches 
were produced from CT images, positional encoding was used to build spatial relationships, which are then 
passed through a transformer encoder with multihead-self-attention using the ViT model. In the process of 
classifying final outputs, a linear layer with SoftMax activation was used along with Grad-CAM algorithm in 
order to visualize which parts of the input are attending to the model while trying to make predictions.  

The model using the augmented dataset reached an accuracy, precision, recall, specificity of 98.75%, 
99.49%, 98.00% and 99.50% respectively, and an F1 score of 98.74%, which is much higher than that of the 
model trained on unbalanced datasets. On the other hand, Grad-CAM offered visual insight into the areas 
where the model paid attention, implying an accurate localization. Transformer model (ViT). Most of the 
currently available methodologies for stroke diagnosis from CT images do not have the right degree of 
automation and explanation. This could be when it comes to a place in the brain and is expected for it to be 
affected within that area. The present study aimed at achieving these by use of the ViT framework with data 
augmentation in efficiency and performance gains. A total of 6651 brain CT images, including 4427 normal 
and 2224 strokes, provided by the Ministry of Health of the Republic of Turkey, were used for the proposed 
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approach. The proposed method considered dataset imbalance addressed as two conditions of training 
scenarios, training the ViT model with the unbalanced raw dataset and augmenting data synthetically 
transforming it. Thus, the ViT model divided CT images into patches, embedded spatial relationships using 
positional encoding, and processed them through a transformer encoder with multi-head self-attention. The 
last classification was performed with a linear layer using SoftMax activation, and then the Grad-CAM 
algorithm was applied to visualize the highlighted areas of model predictions. The model trained on the 
augmented dataset attained accuracy of 98.75%, precision of 99.49%, recall of 98.00%, specificity of 99.50%, 
and an F1 score of 98.74%, which is better performance than the model trained on the unbalanced dataset. 
Moreover, it provided visual insights into what the model focused on with regards to the Grad-CAM algorithm 
showing strong capabilities in localization. However, such a model could only classify the subtypes of the 
strokes, thus rendering them useless for stroke presence detection. Such a small dataset did not also get such 
extent of data which could affect its generalizability by model and deprive deep learning of its full potential 
[8]. 

One of the most important contributions of Yu et al. is this exhaustive survey on CNN used in medical 
image analysis, which includes classification, extraction, detection, and other clinical problems, and the 
challenges as well as the future research directions in the field. Most current techniques in medical image 
analysis are usually limited in application to complex visual data, which CNNs are addressing through 
improved pattern recognition and learning ability. The majorly known CNN architectures in medical imaging 
including Alexnet, GoogleNet, ResNet, R-CNN and FCNN are included in this review. We survey CNN 
applications in solving image classification, segmentation and detection, as well as some other extended tasks 
such as image registration, content-based image retrieval, and image enhancement. Other models that were 
reviewed under this study have included AlexNet, GoogleNet (Inception v1, v2, v3), ResNet (ResNet-50, 
ResNet-101, ResNet-152), R-CNN (Faster R-CNN, YOLO), fully convolutional neural networks (FCNN, U-
Net). Numerous applications in medical image analysis have been successfully achieved, such as 
classification, segmentation, detection, etc. The remaining challenges in CNN related medical image data 
analysis, as stated in the paper, are unavailability of labeled medical data, class imbalance, noise in data, 
inefficient training, and poor handling of high dimension or multi-modal data. These obstacles are proposed 
as future research directions [9]. 

In the research paper by Anaya-Isaza et al., a full-fledged framework for evaluation has been created 
to evaluate the current state of these types of deep learning architectures for brain tumor classification and 
detection. Also, the paper presents a novel model, Cross-Transformer, and it compares seven different deep 
learning networks using MRI data for classifying and detecting tumors in the brain. The framework is meant 
to fasten and increase the precision of early detection of brain tumors. In this iteration, the Figshare database 
was used for brain tumors as a starting point to carry out the classification and detection of the tumor in relation 
to meninges, glial tissues, and pituitary gland tumors using Brain MRI images for tumor detection as well as 
the TCGA-LGG datasets. The study involved several working components such as T1WI, T1-Gd, and FLAIR-
MRI acquisition sequences along with techniques such as data augmentation and transfer learning. This list 
also includes comparable models as InceptionResNetV2, InceptionV3, DenseNet121, Xception, ResNet50V2, 
VGG19, EfficientNetB7, and the new Cross-Transformer. This experiment was also repeated using TCGA-
LGG data in order to test the MRI acquisition sequences and evaluate the Cross-Transformer performance. 

In terms of accuracy, InceptionResNetV2 proved next to best after other networks in classifying brain 
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tumors, by achieving nearly 97% accuracy with a dataset comparatively smaller than the one used by others. 
A contribution of 6% to the accuracy of detection for InceptionResNetV2 tumors through transfer learning 
and data augmentation techniques. Thus, the FLAIR proved to be most useful in identifying a brain tumor. On 
the other hand, this identification was rather less effective for T1WI and T1-Gd sequences. Limitations of the 
study included small unique subject numbers, 2D rather than 3D imaging, lower access to very large higher 
quality datasets with consistent resolution, uncertainty of 2D slice selection affecting accuracy in 
representation for 3D tumor structure, and presence of heterogeneity between TCGA-LGG and all the other 
datasets [10]. 

Adinegoro et al. have made the usage of EfficientNet-B7 for brain tumor classification and U-Net for 
segmentation for a proper diagnosis improvement of brain tumors through MRI images. This study involves 
class of research that attempts to utilize the potential of these advanced machine-learning techniques that are 
improving the diagnostic approach for brain tumor patients. The methodology proposed creating an 
EfficientNet-B7 transfer learning model with more than 66 million parameters for the input into four main 
tumor classes: No tumor, meningioma, glioma, and pituitary tumor. The model was constructed with an input 
layer and four hidden layers having 16, 32, and 128 parameters respectively. The segmentation architecture 
used was that of U-Net with 10 layers, having been constructed from 2D max pooling. This was done through 
normalizing feature maps resulting from max pooling using Batch Normalization, followed by passing them 
to the next layers. The research study was also conducted using Python and Google Collaboratory on a laptop 
with Intel i7 processor and 8GB RAM, using a classification dataset consisting of 7022 MRI images from 
Kaggle and a segmentation dataset with 110 patient images from TCGA. Effective result showed the 
EfficientNet-B7 model could score a very good classification accuracy of 95% while the U-Net architecture 
could score a maximum of 0.99 Intersection over Union (iou) on brain tumour segmentation. This is good data 
to indicate the possibility of using such machine learning tools to potentially raise diagnosis accuracy in brain 
tumours and support clinicians in their clinical decision making [11]. 

Recently, Mahmoud et al. introduced a new convolutional deep learning network model for classifying 
brain tumors using convolutional neural networks that are optimized by Aquila Optimizer for better accuracy 
on MRI images. The intention of this work, as part of an ongoing study, is to develop an improved brain tumor 
prediction system based on an optimized CNN modeling approach and to enhance the application of computer-
aided diagnosis in this area. Pre-trained CNN architectures were VGG-16, VGG-19, Inception-V3 optimized 
with Aquila Optimizer (AQO). The major four phases were included in data preprocessing to process and 
enhance MRI quality so that it could be classified by any algorithm that is being trained in the MR image 
dataset. For the models of CNNs, we used a technique called transfer learning-the learned parameters are 
tailored for the specific task to be accomplished: classification of brain tumors. Finally, we applied the AQO 
algorithm for tuning down CNN models toward further improvement in the overall metrics. The AQO-
optimized VGG19 model achieved the highest accuracy of 98.95% with sensitivity and specificity of 99.1% 
and 99.6%. VGG 16 with modified AQO having second-best accuracy source, at 98.66%, with Inception V3 
model having 97.38% validation accuracy against the AQO. One of the limitations of this study is that pre-
trained CNN models do not allow their proper adaptation to fresh medical data, which partially limits 
flexibility. However, the performance of AQO optimization between datasets may differ, and on bigger 
datasets, operational costs associated with the application of AQO can provide hindrance for broader 
applicability [12]. 
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According to Sangui et al., a modified U-Net model was created that predicts regions of brain tumors 
from 3D MRI images and validated to achieve a test accuracy of 99.4% over the BRATS 2020 dataset while 
outperforming other deep learning based approaches. The purpose of this study is to develop accessible and 
more precise segmentation of brain tumors for regions without access to radiology experts. As a modified U-
Net structure which is designed specifically for 3D MRI brain tumor segmentation with encoder decoder 
structure and skip connections, the proposed model is based upon. Normalization and resizing of the BRATS 
2020 dataset was performed, and then the model was trained in a Kaggle setup using categorical cross entropy 
loss function and Adam optimizer on a 4 Tesla P100 GPU for 35 epochs. In this case, Intersection-over-Union 
(IoU) and Dice coefficient were used as the evaluation metrics for segmentation accuracies. The altered U-
Net reports 99.4% accuracy on test cases and performs better than other models like ResNet and VGG16 on 
multiple evaluation criteria. It displays the way towards proficient, flexible, rapid and accurate diagnostic 
methods assisted by automated brain tumor segmentation, thus allowing radiologists more time for patients or 
possibly saving patients from unnecessary treatments. Quite Respectfully, this has tremendous computational 
and storage requirements for 3D MRI image processing, takes a lot of time to be trained, and still needs to 
look deep into classifier algorithms. Other, even more critical applications of the model to be applied in clinical 
settings include testing it across larger datasets in clinical settings for assurance of robustness and 
generalizability in the real world [13]. 

  Headfirst into brain tumor classification with CNN and CNN-based transfer learning techniques or 
compare the performances of these models in terms of feasibility for brain tumor detection. So the focus of 
the research is to develop better brain tumor detection methods on how best to classify an MRI image using 
the most suitable model. Methodology is revolving around the different deep learning methods with a specific 
example of CNN. Khaliki and Başarslan adopted the idea of transfer learning where pre-trained models with 
InceptionV3, VGG16, VGG19, and EfficientNetB4, were used and incorporated into a dataset of 2,870 MRI 
images, grouped into four: A glioma, meningioma, pituitary tumor, or no tumor. The models were tested using 
both normal CNN architecture and transfer learning models. The custom CNN model created with several 
convolutions and max pooling layers was compared further. For the dataset centered, the highest performance 
is of the VGG16 model with accuracy = 0.98, F-Score = 0.97, AUC = 0.99, recall = 0.98, and precision = 
0.98. Indeed, the VGG16 transfer learning model proved to be indeed superior to the other default CNN and 
transfer learning models by rendering a highly accurate and reliable brain tumor classification from MRI 
images. Like any other study, however, it has one major limitation- data augmentation techniques such as 
image rotation or cropping are not employed in this study and can possibly prove into model improvement. 
This, however, misses the whole point of realizing the true potential of the model generalization under 
different real-world image conditions because there is no augmentation of the dataset with the image [14]. 

Patil and Kirange introduced an innovative ensemble deep convolutional neural network (EDCNN) 
for MRI images tumor classification concerning three types of brain tumors: glioma, meningioma, and 
pituitary tumors. This EDCNN model combines a shallow CNN (SCNN) and the VGG16 model and applies 
the proposed hybrid features in order to achieve improved classification accuracy. It aims at going beyond the 
performance of existing CNN models bymeaningfully combining shallow and deep extraction feature layers. 
The methodology is illustrated by first designing an SCNN, which extracts high-level tumor features, followed 
by extracting a more fine-tuned set of features using a VGG16 model. Finally, an EDCNN model that relies 
on fully connected layers will extract both shallow and deep features. Additionally, the Adam optimizer is 
involved in training the ensemble architecture in the model. The design of the model consists of elements on 
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which we have to validate our hypothesis to prove SCNN-being 2 optimal for data types having less number 
of input values. The VGG16 deep learning model . Thus, Building the Ensemble Deep Convolutional Neural 
Network (EDCNN), merging SCNN and VGG16 features. Adam optimizer for training. The EDCNN model's 
classification accuracy achieves 97.77% which is higher than those of the previous reported deep learning 
methods. Due to combined features from SCNN and VGG16, the model accuracy improves, and it achieves 
reduced information loss and short training time due to the fusion of shallow and deep features.  However, the 
authors put forth that the shallow CNN model hyperparameters can be improved and even optimized using 
metaheuristic algorithms for feature selection. Secondly, it is noted that shallow CNN alone is insufficient to 
act as a complete 'neural model' for accurate tumor classification as it adds to the benefit of the ensemble 
scheme in feature fusion. Apart from furthering their accuracy, the overall model shows lower information 
loss, which indicates that individual deep learning models may not be as powerful alone as such an approach 
is [15].  

TransUNet is a newly developed U-Net based Transformer architecture for medical images 
segmentation. This architecture incorporates self-attention and cross-attention in both the encoder and decoder 
portions of the Transformer. It tokenizes CNN feature map patches for global context capture using tiny targets 
and tumors and can detect anything that's very small in size. Since this whole course will continue to fine 
attention, Transformer further extends segmentation. The methodology of TransUNet includes: 

1. Transformer Encoder: It captures global context information by tokenizing CNN feature map patch. 
2. Transformer Decoder: Segmentation is redefined as a mask classification task with learnable queries 

which are refined through cross attention mechanisms to improve segmentation precision. 
3. Coarse-to-fine Attention Refinement: I have adopted the same in the Transformer decoder to achieve 

better performance in terms of small target segmentation. 
4. Configuration Exploration: Three different setups of the architecture are tested with these experiments: 

Encoder only, Decoder only, and Encoder+Decoders embedding with U-Net. 

Through experiments, it has been demonstrated that for the task of multi-organ segmentation, 
Transformer encoder greatly elevates the performance while with a finer attention mechanism at its decoder, 
it stands at a very high advantage at the task of small scale targets segmentation like in cases of tumor 
localization. The TransUNet so integrated with both global context and fine detail attention far outperforms 
the state-of-the-art best existing methods for segmentation tasks, though cost-prohibitive to train and very 
demanding on the computing resource needs. 

Again, the 2D version of TransUNet does not appear to show a higher level of robustness compared 
with the 3D version (which has proved more accurate and efficient in isolating 3D images in medicine) [16]. 
Khan et al. undertook an in-depth overall review of the current machine learning and deep learning techniques 
available for diagnosing four major neurological disorders like Alzheimer's, brain tumour investigations, 
epilepsy, and Parkinson's disease. Diagnosis using conventional methods often involves manual assessments 
that require a lot of effort and prone to human mistakes. The article shows how effective various ML and DL 
techniques are based on several studies that highlight the methods found to be most effective in detecting brain 
disorders. Different models commonly used are SVM, Random Forest (RF), CNN, RNN, and autoencoders. 
Evaluating the performance of these models used metrics such as accuracy, sensitivity, specificity, AUC, and 
F1 score. The investigation conducted into the total 147 publications concluded that high-performant models 
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such as VGG16 and CNN were exceptional in analyzing MRI and EEG data and could be most easily used 
for classifying Alzheimer's disease, brain tumors, epilepsy, and Parkinson's disease. There are, however, a few 
issues such as the scarcity of annotated high-quality datasets and the opacity of deep learning models that 
deter their clinical interpretations. The authors suggest implementing some Explainable AI (XAI) strategies 
to develop model interpretability and trust among workforce professionals. They also thoughtfully presented 
to resolve the issues of data privacy and promote an interdisciplinary collaboration to improve diagnostic 
applications of the future towards brain diseases [17]. 

In this, Odusami et al. advocate for reformed ResNet18 for binary classification purposes of functional 
MRI brain scans concerning AD with MCI. Traditional diagnostic procedures do not always provide the 
precision that is required in cases of early detection, particularly where similar stages are involved with the 
clear linings. Results showed classification accuracies of 99.99%, 99.95%, and 99.95% in the binary 
classifications of EMCI versus AD, LMCI versus AD, and MCI versus EMCI respectively. This generally 
surpassed the previous methods in both sensitivity and specificity. Also employed in achieving a dropout rate 
of 0.2, this has been done to reduce the degree of overfitting and makes the model more reliable as a whole. 
The whole process relied on the ADNI fMRI dataset that consists of 138 subjects. "Preprocessed the images 
to JPG format with data augmentation and fine-tuned the ResNet18 model by unfreezing all layers along with 
the addition of a customized classifier using ReLU activation and dropout regularization" is just how this 
methodology works. It is believed that this approach lets one's model gain high diagnostic precision related to 
early-stage AD conditions but without creating false positives and maintaining false negatives to a minimum. 
Although the model sprints well on binary classification, the authors brought up a couple of possibilities for 
later work. Such avenues would involve visualization techniques in unveiling how the model arrives at its 
decisions, exploring hybrid models that incorporate into them other neural networks and extending the model 
beyond binary classification to serve as a more complete diagnostic tool for AD [18].  

An automated computerized system to differentiate the three prevalent brain tumor types Glioma, 
Meningioma, and Pituitary tumors from MRI had been developed by Ghosal et al. With this system, an overall 
classification accuracy of 93.83% has been achieved and exceeds existing models. Conventional diagnostic 
tools always produce inaccuracy in brain tumor classifications. This is especially true when large datasets are 
analyzed. The study revealed that a deep convolutional neural network model, SE-ResNet-101, was built to 
enhance the performance of the ResNet-101 architecture by adding additional Squeeze-and-Excitation (SE) 
blocks. Modification or alteration of this network has made it operational in an efficient way to improve its 
accuracy for implementation in medical fields. The dataset contains 3064 T1-weighted images taken from 
contrast-enhanced MRI scans from two hospitals in China, representing data from 233 patients under the three 
tumor categories. A series of pre-processing steps, such as abnormal ROIs (regions of interest) related to tumor 
isolation followed by intensity normalization and data augmentation techniques, were applied to these images 
to improve model performances. The SE-ResNet-101 architecture was trained with the Adam optimizer, early 
stopping, and learning rate schedule to avoid overfitting, producing accuracies of 98.67% on Glioma, 91.81% 
on Meningioma, and 91.03% on Pituitary tumors. However, even though the model showed excellent 
performance, it exhibits certain limitations: it only works on 2-D MRI data and not classified all existing tumor 
types. Future research can aspire to improve this model by classifying it also under 3D MRI data and additional 
tumor types. Although this is an investigation into brain tumors, the authors believe that it can be extended to 
apply to other areas, such as liver lesions, for instance. and breast tumors. Furthermore, the study may have 
been affected by limitations in funding and collaborative feedback, which could lead to certain biases [19]. 
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Jena et al. study the effect of U-Net depth changes on the performance of brain tumor segmentation. 
As it turns out, a reduction in U-Net depth can maintain performance levels similar to those of the original 
model while reducing computational needs. Not only are the typical U-Net architectures vast, but with their 
depth come great computational requirements that could be a hindrance in many instances, particularly in an 
operational setting. This research vigorously investigates the diminishing of convolutional pathways-in this 
case, specifically from the upsampling pathway, thus checking if the model could achieve comparable 
segmentation accuracy with a scaled-down track. Validating the depth-reduced U-Net schemes with BraTS-
2017 and BraTS-2019 for brain tumor segmentation. These consist of varying numbers of convolutional layers 
(21, 19, 17, 15, and 13) in comparison with the original U-Net comprising 23 layers. Important elements in 
model composition include convolutional layers for feature extraction, max pooling for down-sampling, and 
up-sampling through concatenation on the expanding side. Most important results showed that depth-reduced 
U-Net models substantially reduce computation and hardly compromise segmentation accuracy. Reduction 
along the upsampling path gives better results as compared to similar reduction along the downsampling path 
with regard to protection and computational efficiency in segmentation maintenance. The authors claim that 
the conclusions may be relevant for other contexts of biomedical imaging. However, the authors admit some 
limitations, such as reduced performance on removing convolutions from the path of downsampling. This 
highlights the need for careful selection in layer reduction. The study also emphasizes that, while depth-
reduced U-Net models show potential in biomedical imaging, the caveats must always be taken into 
consideration for specific applications"[20].  

A hybrid framework was proposed by Ibrahim et al., in which a convolutional neural network is 
coupled with a particle swarm optimization technique to improve the efficiency of diagnostic analyses for 
Alzheimer's disease and brain tumors using MRI images. Fine-tuning hyperparameters in the traditional CNN 
model proves difficult, which can lead to a decline in classification accuracy. Thus, the framework 
incorporates PSO as part of the automated selection process of most appropriate hyperparameters for CNNs 
with the intent of improving detection and classification on both Alzheimer and brain tumor detection. PSO, 
in its turn around the CNN, fine-tunes important CNN parameters such as count of convolutional filters, size 
of filters, dimensions of pooling layers, striding length, which is the foundation of the approach. In training 
and evaluating the hybrid PSO-CNN model, have been benchmark datasets such as ADNI dataset for 
Alzheimer's disease and other dataset for brain tumors. The model uses Particle Swarm Optimization (PSO) 
over a period of time to refine the model hyperparameters and progressively minimize the loss function while 
increasing the prediction accuracy. High classification rates attained by the PSO-CNN model include 98.50% 
for the ADNI dataset, 98.83% for an Alzheimer's dataset, and 97.12% for a brain tumor dataset. The strategy 
outperformed the most popular transfer learning architectures, including ResNet50, Inception V3, and 
VGG16, for identifying possible Alzheimer disease and brain tumors and qualified as an option for clinical 
diagnostics. However, a significant limitation of the model is that it does not classify images accurately when 
it comes to low resolution and blurry images, which hampers good feature extraction as well. Future 
investigations will then focus attention on improving the methods that are suited for preprocessing or perhaps 
examining alternative approaches to solve the problem of degraded images [21].  

A deep learning approach for brain tumor classification using ResNet-50 architecture with transfer 
learning was proposed by Sahaai et al. This model showed exceptional performance on the brain tumor dataset. 
This methodology proved to be different from usual computational intensive methods when manual feature 
extraction from MRI images were used, which turned out to be a useful alternative for efficiency to traditional 
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classification methods. The advanced ResNet-50 model which incorporated transfer learning achieved a 
validation accuracy of 95.3% thus acting as assistance towards the exact multiclass classification of brain 
tumors.  

This approach relied on an open-access brain tumor database that got severely pre-cooked images and 
various data augmentations such as rotation and flipping that enhanced the robustness of the model while 
reducing overfitting. Using residual connections of the ResNet-50 model effectively mitigated the vanishing 
gradient problem in deep neural networks for better performance. Application of transfer learning and 
hyperparameters optimization such as low learning rate and suitable optimizer significantly reduced training 
time and computing requirement compared to the conventional training from scratch. Interestingly, the 
classification accuracy delivered by the ResNet-50 model was 95.3%, which has the capability to differentiate 
between several classes of brain tumors. Efficiencies and effectiveness of the transfer learning technique 
include a 50% cut in training time and computations. Further authors developed a mobile app based on this 
model so that health professionals would assess patients quickly and give treatment recommendations in time. 
Limitations of this study include the fact that it was based on just one modality-imaging modality: MRI. It 
would be interesting to do research in the future incorporating other imaging modalities since there is a 
considerable opportunity to improve model accuracy and efficiency by increasing the amount of data set, 
tuning the hyperparameters, or exploring different possible architectures, such as U-Net. Future directions of 
research might further analyze multi-modal data for a more general framework of tumor detection [22].  

Roy et al. introduced a new deep learning pipeline using the ResNet-152 architecture for the diagnosis 
of Alzheimer's disease. Conventional diagnostic methods have been inefficient and have an unreliable 
prognosis, especially at the early stages of the disease. The model reported an excellent performance achieving 
99.30% accuracy on the binary classification test (Alzheimer's Disease vs. Cognitively Normal), while 98.79% 
accuracy was achieved multiclass classification across the four stages- Alzheimer's Disease (AD), Cognitively 
Normal (CN), Early Mild Cognitive Impairment (EMCI), and Late Mild Cognitive Impairment (LMCI). The 
technique also included transfer learning from the pre-trained ResNet-152 model, alongside robust 
preprocessing strategies, such as brain extraction with the Brain Extraction Tool and noise reduction using the 
SUSAN Noise Reduction. Translation of excellent classification capabilities of ResNet-152 model into 
clinical practices is expected to significantly benefit patients' affordable, early detection and management of 
Alzheimer's disease. The exclusivity of MRI data poses limitations on the study, as it could restrict 
accessibility and applicability in environments lacking advanced imaging facilities, and the model needs to be 
fortified further by a greater range of imaging techniques. Future endeavors could target multi-modal imaging 
data to enhance not just classification effectiveness, but also generalization [23]. 

In this research work, an effective framework for multiclass brain tumor classification is 'Developed' 
by Basthikodi et al. which used SVM as a primary classifier. Furthermore, this framework contains various 
feature extraction techniques, such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns 
(LBP), and this has a dimensionality reduction process using Principal Component Analysis (PCA) for 
improving model performance. Most of the conventional classification means focused on binary or ternary 
classifications and heavily depended on resource-hungry deep learning algorithms, which limited their 
applicability in practicality. The currently proposed framework was found to be successful and managed to 
achieve a phenomenal 96.03% accuracy in a four-class brain tumor classification problem-a clear 
improvement over existing approaches. The high accuracy, F1 measure, precision, and recall have all been 
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measured at over 96% with the integrated use of SVM with PCA, HOG, and LBP, as verified by ROC curve 
evaluation. This model gives a quite economical computing tool for the overall multiclass classification of 
brain tumors and hence very feasible clinically. However, the authors also present the research limitations, 
such as difficulties with multiclass classification and the need for larger, more varied datasets to better the 
model's strength and applicability in the real world [24]. 

Dheepak et al.  presented a novel framework for classifying brain tumors based on hybrid feature 
extraction using an ensemble of custom kernel functions in an SVM classifier. Traditional methods often failed 
in capturing fine structural and textural details or took plenty of computational resources for them to be 
considered effective in actual clinical applications. In an attempt to overcome all these challenges, the 
presented method incorporated GLCM and LBP in feature extraction to capture textural and spatial detail. 
Further, dimensions were reduced and selected by PCA for enhancing computational efficiency. The SVM 
classifier was basically equipped with four custom kernel functions which include Minkowski-Gaussian, 
exponential SVM, histogram intersection, and wavelet-meant to boost classification accuracy. The framework 
had a very thrilling overall accuracy of 93% in classifying glioma, meningioma, and pituitary tumors and was 
better than most advanced methods. Performance metrics included precision, recall, F1-score, Cohen's kappa 
coefficient, Matthews correlation coefficient which were used to evaluate the system and proved strong and 
reliable. The application of SMOTE for balancing classes also addressed the challenges associated with 
imbalanced data sets, ensuring that fair assessments were made of the model. The study, however, identified 
some limitations, including multiclass classification, and a need for the model to become more efficient in 
computation so as to improve its applicability in real life clinical setting environments [25]. 

Kemila and Al Maki et al. have put forward an innovative model that integrates Support Vector 
Machine (SVM) classifier with River Formation Dynamics (RFD) algorithm to enhance the brain tumor 
classification accuracy. The tumor is classified correctly to enable effective treatment; however, the traditional 
approaches are not truly optimizing the classifier's parameters for the best performance. This problem is 
remedied by SVM-RFD, which adjusts the SVM parameters, such as C and gamma, using an RFD nature-
inspired algorithm to increase the efficiency of the classifier. The experiment produced a classification 
accuracy of 87.56% for the SVM-RFD model, which is 13.19% better than the traditional SVM model, which 
has 74.37% accuracy. The method applied Histogram of Oriented Gradients (HOG) for feature extraction and 
preprocessing consisted of rescaling MRI images and converting them into grayscale. The combination of 
RFD with SVM would therefore optimize parameters effectively so that SVM-RFD outperformed any 
previous work that incorporated SVM for brain tumor classification. However, it must be stressed that the 
study found a limitation in that the classification accuracy for the pituitary tumor class reduced when the 
SVM-RFD model was compared with the standard SVM model. This limitation was answered by the authors, 
who will explore further studies to consider different parameter values within the SVM-RFD framework in 
order to overcome this limitation and to provide better results from this model [26]. 

Standard methods for segmentation and detection of brain tumors have been deferred from Bahadure 
et al. and are based on Berkeley Wavelet Transformation (BWT) for feature extraction. The Support Vector 
Machine (SVM) classifier classifies the tumor. The method gives high accuracy, sensitivity, and specificity in 
discriminating actually normal from abnormal tissues of the brain in MRI images, establishing a foothold for 
clinical application. Preprocessing consists mainly of signal-to-noise enhancement, artifact removal, and skull 
stripping to liberate brain tissue from non-brain tissues. BWT was used to segment brain tissue and extract 
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two fundamentally different kinds of features: texture-based features and histogram-based features. All 
features were given to SVM classifier training to classify normal and abnormal tissues. Multiple steps have 
been taken into the segmentation, including thresholding, binarization, and morphological operations. The 
results reflect a classification accuracy of 94.2%, specificity was attained at 96.51%, and the sensitivity was 
97.72%, which thereby generates a dice similarity index of 0.82. The results reveal an agreement between the 
automated and manual segmentation conducted by radiologists. Authors have suggested that the present 
methodology can be incorporated into clinical decision support systems toward screening and diagnosis of 
tumors by radiologists and clinicians. However, the technique will have serious drawbacks. The future scope 
will be to develop an advanced multi-classifier system integrated into the sophisticated feature selection 
techniques. This will further enhance the classification accuracies of existing systems. Increased sensitivity is 
expected to further generalize the methodology and make it robust enough to be tested on a larger and more 
diverse dataset for application in clinical setups. [27]. 

Gavkare et al. came up with a machine learning framework that classifies brain tumor types based on 
MRI images. The proposed framework used Histogram of Oriented Gradients (HOG) feature descriptor with 
different classifiers. Out of all classifiers applied, the best one was found as XGBoost classifier of 90.91% 
accuracy. This method captures all crucial features of the intensity gradient across brain tumor images that are 
helpful in defining and classifying tumors like gliomas, meningiomas, and pituitary tumors. The process 
involved preprocessing the MRI images by resizing them to an image size of 200x200 pixels, converting to 
gray scale, and applying the median and mean filter to reduce noise, after which the HOG feature descriptor 
was used to obtain a feature vector of length 3780 comprising attributes such as size, shape, texture, and 
intensity. Various classifiers, including XG Boost, Gradient Boost, and K Nearest, were applied in the 
framework [28]. 

Gavkare et al. demonstrated a new methodology for the classification of brain tumors using Histogram 
of Oriented Gradients (HOG) features and using multiple classifiers from Machine Learning. Tumor manual 
classification is also often tedious and error-prone, especially for large volumes of MRIs. Hence, the 
automated technique solves the problems, improving accuracy and efficiency in tumor identification. Their 
approach had excellent precision in brain tumor classification: the XGBoost model surpassed the other models 
such as Gradient Boosting, SVM, Logistic Regression, and KNN, considering an accuracy of 92.02%. It 
covers all phases, including preprocessing, feature extraction, enhancement of images, and spectral analysis, 
to identify the tumor's signature from MRI scans. The XGBoost model is best optimized for maximum depth 
at a learning rate of 0.01, and very astounding results were gathered by precision and accuracy. Although 
constrained by a small dataset, this technique promised a lot for brain tumor detection accuracy. Still, the study 
was limited in terms of the number and variety of the database, which needs further investigation with 
extensive and more diversified datasets. Furthermore, the study is still awaiting regulatory approval, and 
validation and testing are required to fulfill medical device standards [29]. 

III.   RESEARCH METHODOLOGY 

A. Research Approach: Quantitative, utilizing supervised deep learning and machine learning models. 
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B. Process for Literature Review and Selection 

We used Title/Keyword “Brain Tumors detection using machine learning" and "Brain Tumors detection using 
deep learning" in the form of journal articles or conference pages for peer-reviewed ones by Google Scholar. 
It was determined that studies in the range of 2019 to 2024 would be accentuated. However, whenever 
appropriate, older literature was included. Inclusion criterions were set for studies specifically focused on the 
subject of the brain tumor detection through machine learning, especially those dealing with topics such as 
feature extraction methodologies, advanced architectures of neural networks, and comparative analyses of 
machine learning techniques. The process was initiated by reviewing abstracts, only including documents that 
appeared to fit the research subject under consideration. Articles from this review were excluded if they had 
no quantitative evaluations or were unrelated to brain tumor detect. 

 
Fig. 3: Diagram of Selection of Paper For Literature Review  

IV. DATA COLLECTION 

A. BraTS Dataset 
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The Brain Tumor Segmentation (BraTS) dataset is one among the very important datasets available in 
the field of brain tumor research. For example, it includes various kinds of MRI images, such as T1, T2, T1-
contrast, and FLAIR. The annotations for sub-regions of a tumor include enhancing tumors, peritumoral 
edema, and areas of necrosis. The dataset renders 3-dimensional volumetric data and helps researchers 
investigate segmentation and classification tasks in a practically clinical environment. BraTS is known for its 
comprehensive annotations done by professional radiologists and considered a standard for the evaluation of 
developed ML and DL algorithms. However, with respect to the population of subjects in comparison with 
common imaging datasets, this dataset is comparatively very less populated, which makes generalization 
difficult; therefore, there is a need for augmentation methods or synthetic data to enhance model robustness. 

B. Kaggle Brain MRI Dataset 

Kaggle has numerous datasets such as brain MRI datasets for the purposes including, and not limited 
to, the differences between detections with classification for either the presence or absence of tumors and 
multiclass classification of tumor varieties like gliomas, meningiomas, and pituitary tumors. These data are 
essentially 2D slices gained from an MRI volume. They are pretty handy for easy sample representation. While 
Kaggle datasets will probably not have the same 3D context or finer nuances in annotation detail as would be 
the case in BraTS, they are indeed useful grounds on which researchers can use less complicated classification 
tasks. The real-world variability (noise, resolution changes) makes these datasets an ideal source to evaluate 
the robustness of machine learning models. 

C. Figshare Brain Tumor Dataset:  

Figshare brain tumor data contains different types of T1-weighted MRI images, which are categorized 
into the following three types of brain tumors: gliomas, meningiomas, and pituitary tumors. This dataset is 
often used for tumor classification because of its balance in the number of tumors and its accurate labels; since 
it is available in 2D, preprocessing can therefore be easy and fast, thereby quickly facilitating the training 
process. However limited in number of images with no multimodel sequences, such shortcomings show its 
ineffectiveness in superior segmentation or classification task operations requiring 3D data. 

V. DISCUSSION 

A. Comparative Analysis of Medical Imaging Techniques for Detecting Brain Tumors 

a) Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is largely accepted as the optimal technique for the detection of 
brain tumors, given that it shows unmatched ability to demonstrate structures in soft tissue. Using magnetic 
fields with radiofrequency pulses, high-generating-three-dimensional-images of the brain are produced to 
facilitate accurate localization and characterization of tumors. It is also superior in defining tumor borders, 
peritumoral edema, and infiltrative patterns. Functional MRI (fMRI) and Magnetic Resonance Spectroscopy 
(MRS) are explanatory approaches that complement classic imaging with functional and metabolic 
information about the tumor. Unfortunately, despite this high sensitivity of MRI, it still has limitations, 
including prolonged scanning times, artifacts, especially among patients with metallic implants, cost, and 
complexity, all of which could inhibit the availability of this procedure in certain healthcare settings. 
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b) Diffusion Tensor Imaging Technique (DTI) 

Diffusion Tensor Imaging technique is among the more sophisticated techniques available for 
magnetic resonance imaging (MRI). This assists in charting white matter pathways in the brain by tracking 
how water molecules diffuse throughout their internal structure. It is invaluable in the identification of tumors 
that invade or disrupt white matter pathways, mostly gliomas. The information produced by DTI includes 
quantitative measurements such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that help in 
assessing the condition of white matter and differentiating tumors at vary extent or types. Its advantages 
include proper mapping of important brain structure involved in surgical planning; However, DTI does suffer 
from motion artifacts or may show resolution problems in the identification of crossing fiber tracts, which 
might reduce the accuracy in tractography. 

c)  Computed Tomography (CT) Scan 

Computed tomographs basically use X-rays in producing cross-sectional sections or slices of the brain. 
It is a very quick and easy way of diagnosing a brain tumor. It is very good at picking out that which is typically 
associated with a tumor that has calcifications, that has bleeding, or that is affecting any adjacent bony 
structures. With contrast agents, that brings in CT the opportunity to visualize tumor outlines and blood supply 
very well. These advantages, however, come with certain limitations since soft tissue contrast is not as good 
as that of MRI and there are health risks involved in the ionizing radiation exposure. However, with all these 
limitations, CTs still serve as an invaluable adjunct to emergency and initial assessment. 

d. Positron Emission Tomography Scan (PET) 

PET scans, which analyze metabolic activity in brain soft tissues, serve to create functional imaging. 
The patency of this form of imaging has been based upon the use of radiotracers, especially 
fluorodeoxyglucose (FDG), which tend to be deposited in sites of heightened glucose metabolism, commonly 
indicating malignancy. PET provides opportunities in differentiating malignant and benign tumors and 
examines tumor recurrence versus changes induced by treatment, which may include radiation necroses. PET 
is associated with challenges, such as a less spatially resolved comparability with MRI or CT and the use of 
radioactive tracers, which limit its repeated application. On such constraints, PET is a necessary adjunct to 
structure imaging techniques and illuminates otherwise unique aspects of tumor biology. 

B. Comparative Analysis of Machine Learning Model Technique: 

a) Support Vector Machine Classification Technique (SVM): 

The popular machine learning method, Support Vector Machine (SVM), is used mostly for 
classification tasks. It uses a hyperplane that separates the two classes of data and maximizes the margin 
between them. SVM works marvelously in high-dimensional spaces and comes with the advantage of reduced 
overfitting if proper kernel functions have been applied. SVM-based brain tumor detection ends with 
combining SVM with feature extraction methods like Histogram of Oriented Gradients (HOG) and Principal 
Component Analysis (PCA) to extract important features from MRI scans and ultimately boost their 
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classification accuracy. Part of the best thing about SVM is that it allows for the creation of non-linear 
boundaries by using kernels like the Radial Basis Function. SVM requires a lot of resources computationally, 
especially when working with large amounts of data, and sometimes requires perfect tuning of 
hyperparameters for best results. SVM also does not perform well with noisy data and is sensitive to kernel-
and-margin selection. 

b)  CNN Technique: 

CNNs are sophisticated deep architectures designed to serve specific purposes in the image processing 
domain such as classification and segmentation. The convolution layers allow CNNs to autonomously capture 
spatial hierarchies of features from input images, therefore exhibiting high efficiency in pattern detection such 
as tumor identification in medical imaging. Frameworks like VGG, Resnet, and AlexNet have been 
successfully utilized in the classification and segmentation of brain tumors. What makes CNNs important is 
their ability to gather sophisticated features directly from the raw image data, eliminating the need for any 
kind of feature extraction. They also work well on huge image datasets and, even more so, in transfer learning 
models where pretrained models are fine-tuned for particular applications. They, however, would require huge 
computational resources as well as large labelled data to be effective. Furthermore, without proper 
regularization, they are prone to overfitting and may not allow much scope in terms of interpretation of the 
learned features. 

c) U-Net Architecture: 

The U-Net architecture is a typical example of convolutional neural networks designed specifically for 
semantic segmentation in medical image applications. It is an architecture in encoder-decoder format 
incorporating skip connections that provide the segmentation of images while preserving much of the fine 
detail. The most considerable strength of U-Net lies in its capacity to yield pixel-wise predictions, making it 
a turn-on for tumor segmentation in MRI or CT image. The symmetrical layout of U-Net would hold the very 
spatial information relevant to tasks in the medical imaging domain. U-Net is most likely advantageous in the 
situation of a very small amount of labelled data, where it usually requires much lesser number of training 
samples compared to other deep learning techniques. The cost it carries is that of more computation and not 
working very well under substantial noise or artifacts in images. Furthermore, it would be best to use U-Net 
in combination with other models to achieve the classification purpose even though it is excellent in 
segmentation. 

d) ResNet Models (ResNet-18, ResNet-50, ResNet-152): 

The ResNet (Residual Networks) model consists of deep learning frameworks that are used to address 
the very commonly arising vanishing gradient problems while using deeper networks. ResNet gave a solid 
ground for training much deeper networks which can be used to describe more such complex patterns by using 
residual connections. In the realm of brain tumor identification, models such as ResNet-50 and ResNet-152 
are used as classifiers and feature extractors for the recognition of tumor cells. The important feature attributed 
to ResNet was in enabling the training of the extremely deep networks without loss of performance, something 
very important for processing complex high-dimensional medical images. Residual connections also work to 
improve gradient flow during training and thus help stabilize a model. On the downside, ResNet models can 
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be memory hungry and computationally expensive, especially during deeper iterations. Although effective, 
they are often trained on very large datasets and their performance relies heavily on network depth and 
hyperparameter settings. 

e) VGG (Visual Geometry Group) Models (VGG-16, VGG-19): 

The VGG models are indeed deep convolution networks that aim to have simple yet consistent 
architecture with successive layers of smaller 3x3 convolutional filters upon ReLU activation, mainly focused 
on extracting features by depth via “stacking” convolutional layers then connected fully into a single classifier. 
The VGG models extend into VGG16 and VGG19, which had been used in medical image analysis and brain 
tumor detection due to the hierarchical representation learned using such models. They are mainly because of 
simple architecture and great implementation efficacy of these models with large datasets, thus making the 
benchmark of image classifications. However, very deep models such as these usually require huge 
computational resources and memory and have propensities toward overfitting when trained on smaller 
datasets. Unlike the shallow older models or hybrid CNN-SVM structures, VGG models have embedded 
learning deeper into the data representation, thus accustomed to more intricate patterns of data. On the 
contrary, they are concerned only with depth feature extraction and fail to consider the union of shallow and 
deep features present in hybrid models. Also, unlike others, they are poorly equipped to handle three-
dimensional data corresponding to the case, well understood in models like U-Net that are used in better 
volumetric medical data. For thus, VGG models are an excellent asset in medical imaging while being 
computationally expensive. 

f) Inception Models (InceptionV3, InceptionResNetV2): 

The above-mentioned architectures of deep learning, for instance, the InceptionV3 and 
InceptionResNetV2, are multi-branch architectures where sets of convolutions varying in kernel size are 
performed to capture different feature patterns resulting from multi-scaled analysis. They are, thus, one of the 
most efficient models tested on various tasks, including brain tumor detection via image classification. 
Perhaps, this is the greatest boon of Inception models-their aptitude for handling multi-scaled and multi-
dimensional features essential for the variety of possible tumor attributes in medical imaging. This is further 
supported by the fact that they are factorized convolutions and consequently lower in computational 
complexity level; this lends speed and memory efficiency compared with other deep learning architectures. 
While this kind of design is generally overly complicated in terms of interpretation, compared to very simple 
models, it requires a great deal of labeled data and computational power to be effectively trained. The models 
can, however, be influenced by the fine-tuning of their configuration of Inception blocks. 

g) EfficientNet Models: 

A family of such convolutional neural networks is EfficientNet. These are built to optimally use their 
accuracies, execution speed, and model sizes. EfficientNet is a compound scaling methodology using which 
scales a network along its depth, width, and resolution while providing very high accuracies with lesser 
parameters and less computation when compared with other architectures like Renat and Inception. 
EfficientNet showed some impressive performance in image classification tasks, like brain tumor detection, 
in comparison to those from popular architectures of CNN-types - while needing lesser computing power. 
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Paramount advantages of EfficientNet include achieving state-of-the-art results with fewer parameters, 
making it memory and computation efficient. While on the other hand, - EfficientNet is not as popular or 
studied widely in comparison to other models regarding application in medical imaging, i.e., community 
support may be limited. Also, the whole scaling process needs a lot of careful tuning - so trade-offs would not 
be properly managed. 

h) Random Forest Method (RF): 

We have the random forests, which is from ensemble learning, which makes a lot of decision trees and 
classifies data according to the majority vote of those trees during the learning of the data. Random Forest can 
classify some tumors through their textural, shape as well as intensity descriptors when it comes to brain tumor 
classification. The main forte of RF is that it is quite resistant to overfitting while also dealing with the high 
dimensional dataset, as it reduces the variance through the average prediction across many trees. Besides, this 
approach is simpler to implement and interpret compared to deep learning alternatives, however, Random 
Forest models are not always scalable with the growing datasets which would mean more computational 
inefficiencies as tree count increases. Moreover, unlike deep learning models that learn spatial or hierarchical 
features with less input from users, RF completely lacks this internal capacity and therefore works 
exceptionally less in tasks like tumor segmentation. 

Every algorithm has its bright sides and flip sides. SVM works fine on small data sets and also a binary 
classification problem, while more complicated image processing and segmentation problems can be taken 
care of easily by ResNet and U-Net models based on CNN. Inception and EfficientNet are models that extract 
features efficiently at less computational cost; Random Forest is helpful for huge data with low computational 
cost. Algorithm selection is dependent on the specific requirement of the task, the amount of data and 
computation that can be allocated for the process. 

TABLE 1: Model(s) for Detecting Brain tumor and their accuracy 

SR.No
. 

Author Model Technique Dataset Accuracy 

1 Sanui et al. U-Net Deep Learning 
(DL) 

BraTS-2020 99.40% 

2 Sahaai et 
al. 

DNN-ResNet50 Deep Learning 
(DL) 

Fig Share 95.30% 

3 Patil and 
Kirange 

Ensemble Deep Learning Model 
(EDCNN)[SCNN+VGG16] 

Deep Learning 
(DL) 

Fig Share 96.49% 

    VGG16 Model Deep Learning 
(DL) 

  95.00% 

    Shallow CNN Model (SCNN) Deep Learning 
(DL) 

 77.96% 

4 Adinegoro 
et al. 

EfficientNet-B7 and U-Net Deep Learning 
(DL) 

Brain tumor MRI dataset. 
Kaggle(2018) 

95.00% 

5 Bahadure 
et al. 

SVM with GLCM Machine 
Learning (ML) 

  96.51% 

6 Basthikodi 
et al. 

SVM with HOG, LBPAnd PCA Machine 
Learning (ML) 

Kaggle 96.02% 

7 Dheepak Distinct Customised Kernel Machine Fig Share 93.00% 
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et al. (Ensemble) with SVM Classifier Learning (ML) 
8 Gavkare et 

al. 
 XG Boost Machine 

Learning (ML) 
SARTAJ,Br25H and Fig Share 92.02% 

    SVM Machine 
Learning (ML) 

  74.20% 

9 Kemila et 
al. 

SVM-RFD Machine 
Learning (ML) 

SARTAJ 87.56% 

10 Vani et al. SVM Machine 
Learning (ML) 

Not Mentioned Properly 85.00% 

11 Mahmoud 
et al. 

VGG-19 with AQO Transfer 
Learning (TL) 

Br35H: Brain Tumor Detection 
2020 

98.95% 

    VGG-16 with modified AQO  Transfer 
Learning (TL) 

  98.66% 

    Inception-V3 with AQO  Transfer 
Learning (TL) 

  97.38% 

12 Khaliki  
Başarslan 

VGG-16 Transfer 
Learning (TL) 

Brain tumor classification 
(MRI). Kaggle (2020). 

98.00% 

    EfficientNETB4  Transfer 
Learning (TL) 

  97.00% 

    InceptionV3  Transfer 
Learning (TL) 

  96.00% 

13 Ghosal et 
al. 

ResNet-101 Transfer 
Learning (TL) 

Collected From Hospital 93.83% 

14 Jena et al. U-Net Transfer 
Learning (TL) 

BraTS- 2017 and BraTS-2019 89.00% 

C. Comparative Analysis of Feature Extraction Technique: 

a) Histogram of Gradient Orientations (HOG): 

Histogram of Oriented Gradients (HOG) is one technique for feature extraction, wherein small regions 
are examined to find the fundamental orientation of gradients rain. This means the larger image is partitioned 
into smaller blocks or what is known as a cell with a histogram plot for that cell measuring how these cells 
are oriented in terms of the direction of gradients. Normalizing these histograms renders unavoidable the 
change in the lighting and contrast conditions, thus making it more robust for classification. HOG is very 
widely used overall in object detection, especially when texture and shape become vital, like in medical image 
analysis of brain tumor detection. It is very capable in capturing structural and edge features that will 
eventually help differentiate tissues in various medical image cases. Moreover, HOG is very stacked for real-
time applications. Furthermore, it is also invariant to small translations and rotations of objects in image which 
further reinforces the strength of the feature extraction process. On the contrary, it is highly sensitive to large 
scaling of objects, rotations, and so on and therefore may affect the accuracy of the classification in some 
scenarios. It doesn't pick up fine details in an image such as texture changes which might be very important 
for some tasks, such as tumor detection. 

b) Principal Component Analysis Algorithm (PCA): 

Principal Component Analysis (PCA) is a widely used statistical method for reducing the 
dimensionality of data. which is meant for transforming the collection of correlated features into uncorrelated 
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components. It reduces the dimensions of the original data by projecting them onto a smaller set of principal 
components reflective of maximum variance. Much valued in feature extraction, PCA indeed minimizes the 
dimensional values while simplifying high- dimensional data complexity without loss of original information. 
Accordingly, PCA with respect to medical imaging helps diminish the number of features needed in brain 
tumor classification, hence reducing the processing effort in handling subsequent analyses. This method is 
considered a viable one for reducing the computation's complexity by keeping the important features while 
throwing noise or less important details resulting in faster processing and classification. Moreover, It 
Possesses Strong Potential in the Visualization of High-Dimensional Data in Dimensionally Reduced Spaces 
For Better Pattern Analysis. One major limitation of PCA is its assumption of linear relationships among 
features, which may be less valid in complicated medical datasets. Further, it requires too large a dataset for 
optimal results, and its derived components may not be readily interpretable, making it difficult to extract 
meaningful insights concerning the reduced features in a medical context. 

c) Local Binary Pattern Method (LBP): 

The Local Binary Pattern is a texture-based feature extraction technique that compares each pixel with 
its n neighboring pixels to derive local texture information. It gives binary values based on the thresholding 
of the neighborhoods around each pixel in reference to the value at the center pixel. The features extracted 
from the LBP are useful in image classification applications, even in texture analysis for a medical image in 
which the tumor and non-tumor tissues are separately classified. LBP is mostly employed in MRI and CT 
images for detecting tumors simply and efficiently. The method involves both computational efficiency and 
simplicity of implementation, making it hold good in large-scale image classification tasks. It's impressive for 
extracting the crucial texture patterns that help distinguish different types of tissues in medical imaging and is 
invariant to monotonic gray-scale changes; hence, it is robust against variations in illumination changes. LBP 
noise, however, and it is particularly bad in images characterized by a low resolution; it tends to be incapable 
in terms of fine-texture discrimination. Global feature spotting or representation of complex image shapes is 
another area where it lacks excellence. Additionally, it has lesser robustness to those transformations which 
involve scale and rotation, which impacts its performance in some instances. 

d) Gray-Level Co-occurrence Matrix Technique: 

The Gray-Level Co-occurrence Matrix is a statistical method when data has to be processed in 
descriptive terms for spatial distances caused by the intensity of each pixel through an image. In this way, the 
method treats a pair of pixels through one or more angles and at given distances before finally checking the 
frequency of pairs. Therefore, it creates a matrix, which usually is known as GLCM. Most GLCM texture 
features like that of contrast, correlation, homogeneity, and energy are indeed important for distinguishing 
different tissue types in medical images. This method is extensively used for tumor identification, where 
textures of normal and abnormal tissues become very important for diagnosis purposes. The defining texture 
features which differentiate tissues are best captured using GLCM. According to its general definition, it gives 
essential information concerning spatial-wise arrangements of pixel intensities and is frequently very critical 
to the classification of medical images.  

Consequently, GLCM could be useful when it comes to gray variation in brightness in medical images 
since it had very high effectiveness, especially with respect to tumor identification or any anomalies. Another 
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major factor is computational requirements or extra effort that is required for any high-resolution image and 
large datasets. The features of GLCM are significantly affected by noise because they are enriched by it; thus, 
GLCM will show a poor performance when considered for a noisy environment. This method also highly 
relies on an exact choice of parameters like distance and angle of pixel pairs, which drastically influence the 
feature extraction process. 

VI. RESEARCH GAPS 

Noteworthy advancements have been witnessed over the years in the branch of machine learning (ML) 
intended for automated detection of brain tumors, though there still remain quite a lot of research areas to be 
explored. Largely, the research has been limited to the 2D MRI scans, which, due to their lack of representation 
of the complex 3D nature of the tumor, do not allow for high-precision diagnosis nor make models widely 
applicable. Furthermore, there is the absence of a lot of extensive annotated datasets, which will generally 
offer good performance for generalized ML systems as they are usually biased by small or unbalanced 
datasets. Strong architectures like CNNs and U-Net have produced very promising results but have yet to gain 
acceptance in the clinical environment because the very reason they possess interpretability limitations. 
Several of the investigations also disregard multimodal imaging approaches which could complement the MRI 
with CT or PET parts and provide possibly additional information about the characteristics of the tumors. 
These gaps have led to the need for scalable, interpretable, and multimodal ML-based solutions towards the 
augmentation of the accuracy and clinical relevance of brain tumor detection-needs that this research proposes 
to address. 

VII. CHALLENGES 

A. Limited Dataset Size and Class Imbalance: 

A notable limitation with regard to medical image categorization is the restricted size of some of the 
datasets. This is detrimental to the model's capability to generalize. Furthermore, the issue has a class 
imbalance, rendering quite hard the detection of certain uncommon types of conditions/tumors. The views 
regarding the necessity of bigger and more diverse datasets that can more effectively represent the wide 
spectrum of medical conditions and patient populations were converging. Bigger datasets would mean 
superior reproducibility and accuracy in constructing the models for translating texts into real-world clinical 
use. 

B. Issues with Data Quality and Preprocessing: 

The primary hindrances from low-resolution, noisy, and vague features in medical data have great 
limitations within mitigating the model performance, especially in the area of brain tumor detection. 
Moreover, unelaborate preprocessing techniques like ignoring rotation, cropping, and things like that as failing 
to adopt those techniques affect the generalization capability of the model. 

C. Constraints in Computation and Storage: 

The main bottleneck is the requirement for extensive computational power and storage capacity, 
especially in 3D medical images such as MRI and CT scans. Long training periods and substantial resource 
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requirements pose significant challenges to implementing deep learning models in a real-life clinical scenario. 

D. Complexity of Models and Interpretability Issues: 

One of the most critical restrictions is that CNNs are mostly uninterpretable models, which is especially 
serious when making medical decisions involving issues like trust and transparency. adoption of the 
Explainable Artificial Intelligence (XAI) tools will solve such problems. Moreover, the inefficiency of models 
regarding their task such as differentiation of several stroke types or tumor classifications limits their 
application in broad diagnostic services. 

E. Narrow Focus and Use of Single Imaging Modality: 

Many models suffer from being modality specific (e.g. MRI) and lack the generalization to the other 
modalities such as CT or PET scans. This limitation prevents the model from being sufficiently flexible or 
effective in detecting tumors under various conditions. In addition to that, preference to 2D images over 3D 
volumes actually diminishes the amount of information that can be gained from the medical images. 

VII. FUTURE OPPORTUNITIES 

A. Advancements in Feature Extraction and Model Architectures 

The dedicated efforts are being carried out for improving feature extraction methodologies and 
enhancement of model architectures for increasing classification accuracies and robustness. The next goal for 
researchers is to cure all the pre-existing flaws in the latest models like Vision Transformers (ViT), U-Net, 
and deep convolutional networks while being applied to 3D medical imaging data. There will be hybrid 
approaches where shallow and deep features are combined and ensemble methods to reduce loss of 
information and enhance overall performance. These together with hyperparameter optimization techniques 
such as Particle Swarm Optimization (PSO) aim to increase the potency of prediction in models to make them 
most capable in interpretation of medical images. 

B. Expansion and Quality Improvement of Datasets 

It is necessary to increase the size, diversity, and quality of datasets to ensure the improvement of 
reliability and generalization of medical image analysis models. Future research will address the dearth of data 
by exploring approaches such as crowdsourcing the long-term availability of annotated data, establishing 
collaborations with radiologists, and deploying advanced data augmentation techniques, including rotation 
and cropping. Building datasets formed from classes with balanced representation and consistent annotation 
is, therefore, a supplementary requirement in addressing challenges such as class imbalance and noise in data. 
Integrating multi-modal datasets featuring MRI, CT, and PET scans, as well as other types of data, would 
further benefit model building towards more complex and varied challenges relative to medical imaging. 

C. Application in Clinical Settings 

That is an AI model trained on data till October 2023, and those are the aspects that are critical in 
validating AI models for assessing their effectiveness in assisting healthcare providers in creating direct 
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applications It will be possible to evaluate validity and reliability, as well as applicability for diagnostics and 
treatment planning, with these models being tested in clinical trials and field tests from which such data can 
be derived. In addition, Incorporating Explainable AI (XAI) strategies would significantly enhance the trust 
in these technologies by making their entailments as transparent as possible. The anticipated trend is that these 
artificial intelligence algorithms will handle more sophisticated tasks in the future and become an integral part 
of everyday medicine. including multiclass classification, predicting patient outcomes, and supporting early 
disease detection. All of them ensure greater relevance to healthcare applications for AI-based tools. 

D. Integrating Advanced Modalities and Hybrid Strategies 

The inference recognizes the increasing integration of advanced imaging modalities and hybrid 
strategies into research solutions that can effectively improve diagnostic performance. Future studies will 
integrate MRI with PET scans and other acquisition modalities like FLAIR for more comprehensive 
investigations on medical conditions. 3D volumetric imaging instead of the 2D slice-bases evaluation should 
be used in capturing the extreme spatial relations the medical data has, which is expected to improve the 
accuracy of diagnosis. Moreover, tensor-based models have been suggested for analyzing multimodal, high-
dimensional data to provide a better way to achieve efficacious solutions for intricate medical imaging 
problems. 

E. Enhancing Efficiency and Computational Optimization 

It's important to increase the computational efficiency of AI models so they can be really used in 
applications in medicine. Further research would concern reducing the cost of training, memory requirements, 
and inference times of heavy architectures such as TransUNet and CNN-like models. It includes scalable 
algorithms, light architectures, and optimization techniques that make these models computationally efficient 
and deal with huge datasets. Eventually, such advancements would open possibilities for real-time 
deployments of AI systems, especially in poorly resourced clinical settings. 

Engaging in the enhancement of the computational efficiency of AI models in real life is a concern 
when it comes to using that in medical applications. Future studies will focus on cutting down the costs of 
training, memory requirements, and inference times for heavy architectures, such as TransUNet models, based 
on CNN. Proposals will stretch through scalable algorithms and lightweight architectures, as well as 
optimization techniques, to ensure these models remain computationally efficient and applicable to vast 
datasets. These would ensure, in the end, real-time deployment of artificial intelligence systems, particularly 
in under-resourced clinical conditions. 

IX. CONCLUSION 

Machine learning (ML) has emerged recently as a disruptive technology in the analysis and 
classification of tumors, specifically in the brain-used analysis and ultrasound. It has enabled deeper analysis, 
including complex structures, which are not easily visible in medical imaging. CNNs, SVMs, and hybrid 
models have shown potential in improving diagnostic accuracy and aiding early diagnosis of tumors by 
clinicians. A few drawbacks remain, namely, unavailability of large high-quality annotation datasets, 
difficulties in interpretability of the model, and high computational costs. Moreover, previous models are 
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dependent on 2D imaging, which cannot capture the true three-dimensional structure of the tumor in its 
entirety, and they suffer class-imbalance and variation in expert annotation. More concentration in the future 
should be focused on solving these limitations through the incorporation of Explainable AI (XAI) approaches, 
the application of multimodal imaging techniques, and the enlargement of datasets through collaboration and 
data augmentation. Advanced neural network architectures, transfer learning techniques, and ensemble 
methods can improve the classification performance further. Validation of the models in real clinical settings 
and ethical issues related to data privacy are very crucial for the successful implementation of these ML-based 
solutions. By overcoming these barriers, it can revolutionize brain tumor detection by enabling a quicker, 
sharper diagnosis eventually benefiting the patient. 
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