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Abstract – TB (tuberculosis) is still a major worldwide health concern, and in order to 
control its spread and enhance patient outcomes, precise and prompt diagnostic methods 
are required. This study introduces a deep-learning methodology employing a ResNet50 
architecture for the reliable and precise classification of TB in CXR images. The model 
utilizes a robust CNN (Convolutional Neural Network) to extract essential features, 
enhanced by image pre-processing techniques to optimize image quality and overall 
performance. The ResNet50 classifier shows great performance metrics, achieving an 
accuracy of 99.82%, a 99.82% accuracy rate and an AUC of 99.87%. These results 
highlight the potential of ResNet50 as a valuable TB detection tool for healthcare 
professionals, particularly in resource-constrained environments, enabling faster diagnosis 
and treatment. 
 
 Index Terms – TB Diagnosis, Deep Learning, Chest X-Rays, Interpretability, LIME, 
ResNet50. 

I. INTRODUCTION 

As one of the most prevalent infectious disease-related causes of death is TB. Although drug 
treatments are available, particularly benefiting rural and resource-limited areas, TB is sometimes 
misdiagnosed and consequently left untreated [1]. The lungs, which are essential organs of the respiratory 
system, facilitate gas exchange during breathing. Numerous diseases can compromise the respiratory 
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system and interfere with its function [2], with TB being a significant concern [3]. Additionally, TB might 
impact other bodily components, including the brain and spine [4]. The WHO (World Health 
Organization) considers TB a life-threatening illness, and their reports indicate a progressive rise in the 
yearly death toll from TB [5]. 

Traditional clinical assessments, such as physical examinations and patient histories, often lack the 
precision required for accurate TB identification. Subtle or uncommon symptoms can be easily 
overlooked, leading to delayed or missed diagnoses. In contrast, chest X-ray (CXR) imaging offers a more 
reliable and dependable method for detecting lung abnormalities indicative of TB. Medical professionals 
can identify a range of respiratory system disorders through CXR analysis [6]. TB, a recurring infectious 
disease, caused approximately 1.5 million deaths globally in 2020, emphasizing the critical need for early 
and precise detection to curb its spread and reduce mortality. CXR remains one of the most frequently 
used diagnostic tools for tuberculosis detection [7]. 

Recent research has increasingly focused on utilizing deep Convolutional Neural Network (CNN) 
[10] models to identify lung abnormalities, including lung cancer, pneumonia, and TB, from CXR images. 
Similarly, conventional machine learning (ML) techniques have been employed in various studies to 
differentiate between TB, healthy lungs, and other non-TB lung diseases using CXR images. Despite the 
diagnostic benefits of CNN models, they may sometimes miss subtle or atypical TB patterns. Furthermore, 
the use of diverse, high-quality datasets and hierarchical feature extraction can lead to large trends that 
obscure finer diagnostic information. To address these limitations, researchers have developed deep CNN 
models using network pruning strategies to enhance TB detection. 

Traditional machine learning (ML) models also have their limitations [12]. They require time-
consuming and domain-specific feature engineering. Unlike deep learning models, ML algorithms may 
struggle to interpret complex, non-linear relationships within the data. While deep learning algorithms 
excel in many areas, they can underperform with high-dimensional data, such as images. Both approaches 
often struggle to balance accuracy and computational effectiveness, especially in situations with limited 
resources or in real time. The use of a ResNet50 architecture for automatic TB detection from CXR 
pictures is investigated in this work [8] [9]. The motivation is to raise the efficiency and accuracy of TB 
detection using advanced DL techniques while ensuring that the model remains computationally efficient 
for real-world scenarios. The ResNet50 classifier demonstrates exceptional performance measures with 
recall, precision, accuracy, and f1-score that is highly aligned with the contribution to this study and is of 
99.82%, along with an AUC of 99.87%. 

II. LITERATURE SURVEY 

 Tuberculosis remains a huge global public health concern., resulting in substantial morbidity and 
mortality. The WHO identifies tuberculosis as one of the foremost infectious diseases, highlighting how 
crucial early discovery is to successful treatment and management. Traditional diagnostic methods, 
including sputum smear microscopy, chest X-ray (CXR) analysis, and molecular tests such as GeneXpert 
and PCR, have been widely used. However, these approaches are limited by factors such as insufficient 
sensitivity, the requirement for specialized human expertise, high implementation costs, and limited 
availability in resource-constrained settings. The use of AI (artificial intelligence), especially deep 
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learning technologies, has increased recently, for the automated detection of TB has shown considerable 
promise, leveraging sophisticated image analysis techniques on CXR images. Several research teams have 
classified CXR images into TB and non-TB cases using conventional machine-learning techniques [13]. 
By fine-tuning the parameters of deep-layer CNN, a variety of DL methods have been applied more 
recently to identify tuberculosis [11]. One study found that a computer-aided technique that employed 
CNNs and intelligent pattern recognition was able to diagnose tuberculosis from CXR images with an 
accuracy of 88.76% [14]. Using a transfer learning technique, another study detected tuberculosis with 
94.89% accuracy [15]. Furthermore, a CNN ensemble-based approach for the automatic categorization of 
tuberculosis from X-ray images was introduced, showing an 86% accuracy rate. [16]. 
 
 A pre-trained CNN model that is generalized for TB detection has also been proposed [17] with 
and without image augmentation, this model achieved accuracies of 81.25% and 80%, respectively. Other 
researchers utilized pre-trained CNNs, including ChexNet and DenseNet201, for detection accuracies of 
96.47% and 98.6% [10], respectively, highlighting the general performance of segmentation in enhancing 
diagnostic performance. Furthermore, visualization techniques like Score-CAM have been used to ensure 
that the model's decision-making is primarily based on lung regions, thus reinforcing the approach. One 
study evaluated five AI algorithms for TB detection from chest X-rays, with accuracies reaching as high 
as 95%. There is a growing shift from traditional clinical methods of TB detection toward AI-based 
solutions, which have demonstrated significant advancements in diagnostic capabilities. While CNN-
based models have shown remarkable accuracy in automating TB diagnosis, challenges related to dataset 
diversity, model interpretability, and deployment feasibility remain. To address these limitations, the 
present study explores the application of a ResNet50 architecture, aiming to revolutionize TB detection 
through a fast and accurate AI-driven diagnostic tool, building upon the foundation laid by previous 
research. 
 
III. PROPOSED METHODOLOGY 
 

The methodologies used in this investigation are described in depth in this section. It contains 
explanations of the ResNet50 model's design, preprocessing methods, and dataset used. A visual 
representation of the entire workflow is given in Figure 1. 

 

Fig. 1: Overview of the proposed workflow, from dataset acquisition to classification 
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A. Dataset Description 
 
This work makes use of the TB Chest Radiography dataset from Kaggle, a publicly accessible resource 
for TB categorization research. Images in the dataset are divided into two main categories: normal cases 
and TB-positive patients. 700 TB-positive chest X-ray photos are included in the publicly available 
dataset, along with 3500 normal chest X-ray images that served as a control group. Researchers can also 
obtain an additional 2800 TB-positive image sets through an agreement with the NIAID TB portal, further 
enhancing the dataset for more comprehensive analysis. To ensure a balanced representation of both 
classes, the data is oversampled to achieve a 3500:3500 ratio. The dataset is then separated into three 
sections: testing (10%), validation (10%), and training (80%). This partitioning ensures a robust model 
assessment and reliable performance evaluation[18]. 
 
B. Dataset Preprocessing: 
 

1) Image Conversion: The initial step in preparing the data involves image conversion, where the raw 
dataset, consisting of PNG files, is transformed into a NumPy array. NumPy arrays, which are 
essentially matrices optimized for mathematical operations, facilitate efficient data translation and 
processing. Each image is initially stored in a specific file format and is now represented as a 
NumPy array with dimensions H × W × C (height, width, channels), where C represents the color 
channels (typically 3 for RGB images). This array format is fundamental for model input, 
enhancing processing and management. 

2) Image Resizing: To address variations in image dimensions, images are resized to a consistent size 
of 128x128 pixels from their original 512x512 resolution. This scaling ensures uniform image 
ratios across all images, making them suitable for batch processing during model construction. 
Interpolation methods, such as bilinear interpolation, are employed to reduce the image size from 
512×512 to 128×128 while preserving essential features and minimizing computational cost. 

3) Normalizing Pixel Values: Pixel values are normalized to the range 1, further standardizing the 
data. This step is crucial for practical training as it enables the model to converge stably and more 
rapidly. Initially ranging from 0 to 255, the pixel values are scaled to the 1 range by dividing by 
255, reducing sensitivity to pixel intensity variations and optimizing the overall learning process. 

4) Image Enhancement: To increase the visual quality of the photos, a variety of image enhancement 
techniques are used. Contrast stretching enhances image contrast by expanding the range of pixel 
intensity values across the entire available range. The contrast stretching formula ensures that the 
original intensity values are mapped to a larger scale, enhancing the distinctiveness of features and 
supporting feature extraction. Additionally, histogram equalization aids in image contrast 
adjustment by uniformly spreading pixel intensities throughout the given range. Remapping the 
intensity values using the cumulative distribution function (or CDF) does this.By applying 
histogram equalization to smaller areas of the image, adaptive histogram equalization increases 
local contrast by emphasizing features that might be obscured by global changes. To prevent noise 
overamplification, Contrast Limited Adaptive Histogram Equalization (CLAHE) is often used in 
homogeneous areas. 
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C. ResNet50 Architecture 
 
Figure 2 provides a detailed illustration of the ResNet50 model's architecture, which consists of 9 layers. 

 
Fig. 2: Architecture of the Advanced TBNet Classifier model 

 
1) Input Layer: The ResNet50 model accepts 224, 224, 3 shaped input pictures. The network is fed 

these pictures in order to extract features. 
2) Convolutional Layers and Residual Blocks: Each residual block has ReLU activation functions, 

batch normalization layers, and convolutional layers. There are multiple stages in the ResNet50 
architecture, and each one has a number of residual blocks. These phases gradually increase the 
number of feature channels while decreasing the feature maps' spatial dimensions. As a result, the 
network can record features at various complexities and scales. 

O =ReLU(W ∗X+b)  
ReLU(z) = max(0,z) 

where X is the input (an image or feature map), W is the filter weights, O is the output, b is the 
bias term, and ∗ indicates the convolution process. 

3) Pooling Layers: By reducing the spatial dimensions of the feature maps, pooling layers lower 
computational cost and boost the network's resistance to spatial fluctuations in the input images. 
In ResNet50, max pooling is frequently utilized. 

 P =Pooling(O) 
where P, the pooled result, reduces the feature maps' spatial dimensions 

4) Fully Connected Layer: The feature maps are input into a fully connected layer after being 
flattened into a 1-dimensional vector by the convolutional and pooling layers. This layer associates 
the output classes (TB positive or negative) with the learned characteristics. The model's 
confidence in the positive class (TB positive) is then represented as a probability between 0 and 1, 
this is acquired by running a sigmoid activation function through the fully linked layer's output. 

5) Output Layer: A single unit with a sigmoid activation function makes up the last layer of the 
ResNet50 model, producing a probability between 0 and 1. This probability reflects the model's 
confidence in the positive class (TB positive). The computation is as follows: 
y = σ(W × D + b) 
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where: 
The sigmoid activation function σ is, 
y is the final prediction,  
W is the output layer weights and b is biases, respectively. 

6) Regularization: To avoid overfitting, regularization strategies like L1 and L2 regularization are 
employed. To stop the model from finding too intricate patterns that fit the noise in the training 
data, these methods include a penalty term in the loss function. The regularization terms are defined 
as: 
L1 = λ1 |W| 
L2 = λ2 W^2 
where λ1 and λ2 are the regularization constants, 
W is the weight matrix. 

7) Optimizer: During training, the model's weights are modified using the Adam optimizer. Adam 
uses estimates of the gradients' first and second moments to modify the learning rates for each 
weight. The update rule for the optimizer parameters is as follows: 
θt+1 = θt − η * mt / (√vt + ε) 
where mt is gradient's moving averages and vt is squared gradient, θt is  parameter at time step t, 
η is learning rate, and ε is a tiny constant to avoid division by zero. 

8) Loss Function: To train the model, the binary cross-entropy loss function is employed.  This loss 
function quantifies the discrepancy between the expected probability and the actual binary labels. 
Given N samples, the binary cross-entropy loss is calculated as: 
L = -1/N Σ [yi log(ŷi) + (1 - yi) log(1 - ŷi)] 
where: 
The number of samples is N. 
The true label is yi, and 
The predicted probability is denoted by ηi. 

 
IV. RESULTS AND DISCUSSIONS 

 
 The evaluation results of the ResNet50 model as a tuberculosis detection classifier are shown in 
this section.We give a thorough analysis of the model's performance, evaluating its accuracy in detecting 
TB cases using chest X-ray pictures. Key performance measures such the confusion matrix, F1 score, 
precision, accuracy, and recall are used to evaluate the model. Additionally, we examine loss and accuracy 
curves, The results can be fully understood thanks to the confusion matrix and ROC (Receiver Operating 
Characteristic) curves. The addition of LIME-based explainability provides more information about how 
the model makes decisions. 

A. Comparative Analysis and Performance Metrics Evaluation 

Table I shows the performance evaluation metrics of the ResNet50 model for identifying tuberculosis 
from chest X-ray pictures. With a score of 99.62%, the model exhibits excellent alignment with the actual 
labels and a high degree of prediction accuracy. This high accuracy shows that the ResNet50 model 
effectively reduces false positives and false negatives, ensuring reliable detection. The model has a low 
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false-positive rate and accurately detects TB patients with a precision value of 99.63%. Reducing false 
positives is crucial in medical settings because they may cause unnecessary patient anxiety and additional 
testing. 

TABLE I: Performance Metrics of the ResNet50 Regarding Tuberculosis Detection 

Model Accuracy(%) Precision(%) Recall(%) F1-score(%) 

ResNet50 99.62 99.63 99.62 99.62 

 

 Table I presents the performance evaluation scores for the ResNet50 model in identifying TB from 
chest X-ray images. The model achieves an accuracy of 99.62%, indicating a strong alignment with the 
actual labels in its predictions. This high accuracy indicates that the ResNet50 model can reduce false 
positives and false negatives, producing dependable detection results.The precision value is 99.63%, 
demonstrating the model's ability to correctly identify TB cases while minimizing false positive results. 
Reducing false positives is critical in clinical settings, as they can cause unnecessary patient anxiety and 
further diagnostic procedures. The model's effectiveness in identifying true TB cases is reflected in a recall 
value of 99.62%, crucial for accurate early detection and timely treatment. The F1-score, which balances 
precision and recall, is 99.62%, offering a comprehensive measure of performance. This metric is 
particularly important in scenarios with skewed datasets, as it indicates how well the model manages 
true/false positives and true/false negatives concurrently. 

 The ResNet50 model demonstrates strong performance, gaining an accuracy of 99.62%, which 
compares favorably to existing approaches such as UNet + Xception (99.29%) and EfficientNetB3 
(99.10%). In comparison to the CNN, ANN, and RNN combination, which reported an F1-score of 88%, 
the ResNet50 model achieves an F1-score of 99.62%, indicating a notable performance improvement. The 
high accuracy of the ResNet50 model underscores its potential for effective tuberculosis classification in 
real-world automated diagnosis applications. The ResNet50 model demonstrates impressive strength as a 
promising solution for automated TB detection in medical settings. Given that precision and reliability are 
crucial in clinical deployment to healthcare facilities, the model demonstrates excellent performance 
capabilities. This successful outcome highlights how advancements in machine learning can enable better 
healthcare diagnostic systems, potentially delivering accessible TB screening worldwide. 

B. Accuracy and Loss Curves during Training and Validation 

The accuracy and loss curves, which show the ResNet50 model's development throughout 30 training and 
validation epochs, are shown in Figures 3 and 4, respectively. As the number of epochs rises, the training 
and validation accuracy curves show a steady improvement. Initially, the training accuracy curve (solid 
blue line) exhibits a rapid increase, indicating the model's quick adaptation to the training data patterns. 
The validation accuracy curve (dashed red line) follows a similar upward trend, with minor fluctuations, 
demonstrating the model's ability to generalize to new instances. The ResNet50 model achieves consistent 
accuracy gains, with the training and validation accuracy converging to approximately 99%. This indicates 
that the model effectively learned TB detection features and stabilized without significant overfitting. 
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Fig. 3: Training and validation accuracy for the proposed ResNet50 over epochs 

 

Fig. 4: Training and validation loss for the proposed ResNet50 over epochs 

 The loss curve in Figure 4 illustrates how the ResNet50 model reduces error during training and 
validation. The solid blue line, representing the training loss, starts at a high value and decreases as the 
model optimizes its parameters with each training epoch, indicating improved performance. Similarly, the 
validation loss (dashed red line) also decreases, with slight oscillations, reflecting variations in the model's 
ability to generalize across different epochs. As the training progresses, the training and validation loss 
values converge to low levels and stabilize, indicating that the ResNet50 model has reached convergence. 

C. ROC Curve for the ResNet50 Model 

 By employing the ROC curve to illustrate the trade-off between sensitivity (true positive rate) and 
1-specificity (false positive rate), Figure 5 offers a thorough assessment of the ResNet50 model's 
diagnostic performance. The model's dramatic climb along the y-axis indicates its high sensitivity, which 
approaches the top-left corner of the y-axis for different threshold values. This illustrates the classifier's 
ability to reduce false negatives while differentiating between TB-positive and TB-negative cases. 
Additionally, the ROC curve is clearly distinct from the diagonal baseline, which represents random 
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guessing, demonstrating the model's effectiveness in distinguishing between classes. The consistent 
upward trend of the ROC curve shows the stability of the classifier's performance over time. For clinical 
applications, maintaining a balance between sensitivity and specificity is crucial to minimize both missed 
diagnoses and false alarms. Therefore, the ROC curve confirms the reliability and robustness of the 
ResNet50 model for TB detection. 

 

Fig. 5: The ResNet50's ROC Curve, which shows the trade-off between sensitivity and specificity for tuberculosis detection 

D. Error Analysis 

 A thorough examination of the ResNet50 model's performance is given in Figure 6, which displays 
the confusion matrix for the test dataset. The classifier correctly identified 350 samples as true negatives 
(TB-negative) and 350 samples as true positives (correctly identified TB cases). The model produced 3 
false positives, where TB-negative samples were incorrectly classified as positive. Notably, the model had 
0 false negatives, where TB-positive cases are missed. 

 

Fig. 6: Confusion Matrix Representing the Classification Performance of the ResNetB0 on Tuberculosis Detection 

The classifier's capacity to discriminate between positive and negative situations was demonstrated 
by the error rates, which were often restricted to minimal false positives and no false negatives. These 
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results demonstrate that the model is very reliable in detecting TB, exhibiting high sensitivity and 
specificity. 

E. XAI using LIME 

 LIME was employed as part of the XAI framework to enhance interpretability and build trust in 
the ResNet50 model for TB detection. Figure 7 presents LIME-generated explanations alongside the 
original chest X-ray images and their segmentation masks, as shown in the visualization. The first and 
second rows of the figure show examples of images that were classified as ‘Normal’. 

 

Fig. 7: LIME-based Explainability for TBNet Classifier Predictions 
 

The following key components are shown: 

• Actual Images (Leftmost Column): The baseline for analysis is the original chest X–rays. 
• Model Predictions (Second Column): The classifier’s confidence scores and features contributing 

to its prediction are highlighted in visual overlays. The areas of attention are highlighted by color-
coded overlays (e.g. magenta, cyan). 

• Segmentation Maps (Third Column): These are lung regions segmented using the reference 
segmentation technique, with the number of distinctive segments used in the analysis. 

• LIME Explanations (Rightmost Column): LIME-generated heat maps show positive (green) or 
negative (yellow) regions that contribute to the model’s predictions. Red highlighted areas are 
regions of high relevance to classifier decision-making. 

 Based on the LIME analysis, the ResNet50 model's decisions are primarily based on specific lung 
regions, enhancing the model's interpretability and providing a better understanding of its decision-making 
process. By aligning with clinical expectations, the classifier focuses on clinically relevant areas for TB 
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diagnosis, thereby supporting the model's reliability for TB detection tasks. Additionally, the comparison 
visualizations demonstrate the strength of the ResNet50 model's predictions across various conditions, 
confirming the model's capacity to generalize and operate consistently over several datasets and 
environments. This approach provides a more transparent and reliable system for clinical usage and 
increases confidence in the model's forecasts. 

V.  CONCLUSION AND FUTURE WORK 

 By combining convolutional neural networks (CNNs) and improved preprocessing procedures, 
the ResNet50 model significantly improves diagnostic accuracy and advances tuberculosis detection by 
utilizing deep learning approaches. The model's predictions are made more transparent and interpretable 
in this study by utilizing explainable AI (XAI) approaches like LIME. The ResNet50 model builds trust 
with physicians and stakeholders by showing the pertinent regions of chest X-rays that guide its 
conclusions, thereby bridging the gap between advanced AI models and their real-world applications. 
Certain limitations must be acknowledged. The model's effectiveness is contingent upon access to high-
quality, well-annotated datasets, rendering it susceptible to biases stemming from variations in image 
quality and inconsistent labeling standards. While LIME offers localized interpretability, it may not fully 
encompass the complexities of the decision-making process. Furthermore, challenges remain in 
identifying rare forms of tuberculosis, such as extrapulmonary TB. Future research should focus on 
enhancing dataset diversity through federated learning and international collaborations. Incorporating 
clinical metadata and multimodal imaging (e.g., CT scans) could improve prediction accuracy. 
Additionally, large-scale validation in real-world environments is essential to evaluate the model's 
adaptability across varied populations. Expanding the ResNet50 framework for multi-disease detection 
could further amplify its impact on global health. 
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