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Abstract – Prolonged stress can lead to mental health issues like anxiety and sleep disorders. 
Heart Rate Variability (HRV) serves as a key physiological marker for stress detection. 
Unlike heart rate, HRV measures the variation in time intervals between heartbeats (RR 
intervals). This study proposes a CNN-based model for classifying stress into no stress, 
interruption stress, and time pressure stress using HRV features. Evaluated on the SWELL-
KW dataset, the model achieves 99.9% accuracy, outperforming existing methods. Feature 
extraction techniques, such as ANOVA, further validate the significance of HRV features in 
stress detection. 

Index Terms – Stress detection, heart rate variability, convolutional neural network, 
feature extraction. 

I. INTRODUCTION 

Stress is a response to external stimuli that can disrupt mental and physical well-being. Chronic 
stress over activates the sympathetic nervous system (SNS), leading to various health issues. Traditional 
stress assessment relies on subjective evaluations, whereas physiological measures like  Heart Rate 
Variability (HRV) offer objective insights into stress levels. HRV reflects variations in time intervals 
between heartbeats (RR intervals). Research shows that HRV increases during relaxation and decreases 
under stress. As the Autonomic Nervous System (ANS) regulates stress responses, physiological markers 
such as electrocardiograms (ECG), heart rate, blood pressure, and respiration rate help assess mental stress 
levels. ECG-based HRV extraction requires clinical expertise, but advancements in the Internet of Medical 
Things (IoMT) have enabled wearable devices for stress monitoring. Various machine learning (ML) and 
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deep learning (DL) algorithms have been explored for stress detection, with the SWELL-KW dataset being 
a widely used benchmark. However, existing models struggle with ultra-high accuracy in multi-class stress 
classification. 

II. RELATED WORK 

Existing research on HRV data quality has analyzed ECG and IoMT devices like Elite HRV, H7, 
Polar, and Motorola Droid. Studies indicate minor discrepancies between HRV values from IoMT devices 
and traditional ECG measurements. Despite small errors, IoMT devices remain a cost-effective alternative 
for stress monitoring. Machine learning and deep learning techniques have been widely used for stress 
classification. Traditional methods such as Naive Bayes, KNN, SVM, MLP, Random Forest, and Gradient 
Boosting   have achieved up to 80% recall in binary classification. SVM with radial basis function (RBF) 
reported 83.33% accuracy using HRV features. Deep learning approaches, including CNNs, have 
demonstrated better accuracy, with one model achieving 98.4% accuracy. Stress Click, a study using 
Random Forest, classified stress based on mouse-click patterns. 

For multi-class stress classification, the SWELL-KW dataset has been used to categorize stress 
levels as no stress, interruption stress, and time pressure stress. An SVM-based model reached 90% 
accuracy. The    WESAD dataset has also been used for binary and three-class classification, with machine 
learning models achieving 81.65% accuracy and deep learning models reaching 84.32%. Recent studies 
have explored advanced deep learning models like Genetic Deep Learning CNNs (GDCNNs), which are 
effective for 2D data classification but require significant modifications for 1D stress data. A 2022 study on 
the SWELL-KW dataset achieved 88.64% accuracy, 93.01% precision, and an F1 score of 82.75%. The 
proposed 1D CNN model in this study outperforms these approaches, achieving 99.9% accuracy in multi-
class stress classification. 

III. FRAMEWORK OVERVIEW AND DATA PREPROCESSING 

Framework Overview 

This section outlines the framework for multi-class stress classification. It includes data collection, 
dataset preparation, and preprocessing, while the CNN model is discussed in the next section. 

Data Collection and Dataset 

The study uses the SWELL-KW dataset, which includes HRV signals, computer activity logs, facial 
expressions, body postures, and physiological responses. The dataset was collected from 25 
participants engaged in knowledge-based tasks under different stress conditions: normal, time pressure, 
and interruptions. Participants' stress levels were labeled by medical professionals. 

IV. A CNN MODEL FOR STRESS STATUS CLASSIFIVATION 

we present the developed deep learning model for stress status classification, the model consists of 
feature ranking, feature extraction, and tress level classification 

Feature Ranking and Extraction 



196	

 

 

Feature ranking is performed using the ANOVA F-test, which identifies the most relevant features 
for classification. This statistical method evaluates whether different sample groups share the same 
distribution. Initially, all features are used, and less significant ones are removed to optimize 
training time while maintaining accuracy. 

 

Fig 1: System Architecture 

CNN-Based Deep Learning Model 

The model is based on a 1D Convolutional Neural Network (CNN), which is effective for learning 
from sequential data. It includes an input layer, multiple hidden layers, a max-pooling layer, a 
flattening layer, and an output layer. The input layer applies convolution using 64 filters, a kernel size 
of 2, and the ReLU activation function to speed up convergence. The max-pooling layer reduces 
feature dimensions, while the flattening layer converts data into a 1D vector for classification. A 
softmax function is used in the output layer to categorize stress levels into three classes: no stress, 
time pressure, and interruption. The model is trained using categorical cross-entropy loss and 
optimized with the ADAM optimizer for efficient learning. 

Data Preprocessing 

HRV data is reformatted from a time-series structure to numerical sequences. Noisy, incomplete, or 
missing data is removed. The dataset undergoes normality testing and is split into training and 
testing sets. Features are normalized and reshaped for compatibility with the CNN model. The 
model is trained using Google Colab with batch processing for efficiency 
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V. PERFORMANCE METRICS 

The performance of the 1D CNN model for multi-class stress classification is assessed using 
discrimination analysis on the SWELL-KW dataset. The key evaluation metrics include Precision, 
Recall, Accuracy, F1-score, MCC, a classification report, and a confusion matrix. The confusion 
matrix is a two-dimensional table comparing actual versus predicted values, categorized into True 
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). TP occurs when 
the model correctly identifies a positive class, TN when it accurately detects a negative class, FP when 
it incorrectly predicts a positive class, and FN when it wrongly classifies a negative class. The 
proposed block chain-based KYC background consists of three main components: customer on 
boarding, credit allocation, and risk valuation. The background leverages Ethereum smart contracts to 
automate these processes and ensure data integrity. 

VI. CLASSIFICATION OF RESULTS AND DISCUSSION 

In this section, we present the experimental results and reveal the importance of ANOVA-based 
feature selection. 

Feature Ranking and Selection 

The SWELL-KW dataset includes 34 features, but some are irrelevant or act as outliers. The 
ANOVA method ranks these features based on their F-values, with higher values indicating greater 
importance for stress classification. The forward sequential selection method then identifies the most 
relevant subset. The model achieves over 95% accuracy with fewer than 17 top-ranked feature 

Feature Ranking and Selection 

The SWELL-KW dataset includes 34 features, but some are irrelevant or act as outliers. The 
ANOVA method ranks these features based on their F-values, with higher values indicating greater 
importance for stress classification. The forward sequential selection method then identifies the most 
relevant subset. The model achieves over 95% accuracy with fewer than 17 top-ranked features. 

Performance with All Features 

Using all features, the 1D CNN model classifies stress into three categories: no stress, time pressure, 
and interruption. The model achieves an accuracy of 99.9%, with Precision, Recall, and F1-score all 
reaching.The confusion matrix shows a classification error of less than 0.01%. Validation tests 
confirm that the model is not overfitted, as training and validation accuracy remain nearly identical. 

Performance with Top 15 Features 

The model was further evaluated using only the top 15 ANOVA-ranked features. The results showed 
that Precision, Recall, F1-score, and MCC remained high, averaging 96.5%, 94.6%, 97.0%, and 
92.9%, respectively. Using a 70/30 train-test split, the model achieved an accuracy of 96.1%. While 
using all features yields better results, it comes at the cost of longer training times. Selecting a 
smaller feature subset offers a balance between accuracy and computational efficiency. 

K-Fold Cross-Validation 
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To ensure robustness, a 5-fold cross-validation was performed. The average scores across the five 
splits were Precision = 94.4%, Accuracy = 94.5%, Recall = 93.3%, F1-score = 90.8%, and MCC = 
90.8%. These results confirm that the model maintains high classification accuracy across different 
test sets. 

Hyperparameter Optimization 

Hyper band tuning was applied to optimize the model’s hyper parameters using the top 15 features. 
The best parameters—filters = 160, kernel size = 5, and dense units = 48—yielded a validation 
accuracy of 99%. However, hyperparameter tuning can be resource-intensive and dataset-specific, 
making it less practical for all applications. 

Comparison with Existing Studies 

A comparison with previous studies shows that no existing model using the SWELL-KW dataset 
outperforms the proposed 1D CNN model in terms of Accuracy, Precision, Recall, F1-score, and 
MCC. While one study achieved better performance using all available features, it did not apply 
feature selection techniques. This highlights the effectiveness of the proposed approach in balancing 
accuracy and computational efficiency. 

 

Fig 2:User Interface For Login Page 

 

Fig 3:  User Interface For Registration page 
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Fig 4: -Stress Prediction Ratio Details 

 

 

Fig 5: Prediction of Stress 

 

Fig 6:Accuracy Results 
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VII. FURTHER DISCUSSIONS 

The execution time difference between the full-feature and top-15 feature models is minimal due to the 
dataset’s moderate size (410,322 records, 34 features) and the use of Google Colab’s high-performance 
CPUs and GPUs. However, for larger datasets or limited computing resources, feature reduction 
significantly improves efficiency, especially during validation. Although this model is based on the 
SWELL-KW dataset, it can be adapted to other mental health datasets with proper tuning. As part of an 
ongoing study, real-life physiological data is being collected from a Norwegian hospital using non-
wearable IoT devices. Future work will evaluate the model’s performance on this dataset, though those 
results are beyond this paper’s scope. 

VIII. CONCLUSION  

This study presents a novel 1D CNN model for stress classification using HRV signals, validated 
with the SWELL-KW dataset. ANOVA-based feature selection was applied for dimensionality reduction. 
Extensive training and validation show that the model outperforms existing methods in Accuracy, 
Precision, Recall, F1-score, and MCC when all features are used. Even with ANOVA-based feature 
reduction, performance remains high. Future work will focus on optimizing the model for edge devices to 
enable real-time stress detection.  
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