Vol. 3 No. 2 (2025): Issue - 02
Survey / Literature Reviews

Precision Medicine: Innovations and Challenges

Jitender Bisht
central university of himachal pradesh
Umesh Kumar Yogi
Department of Computer Science and informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Parveen Sadotra
Department of Computer Science and informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Pradeep Chouksey
Department of Computer Science and informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India
Mayank Chopra
Department of Computer Science and informatics, Central University of Himachal Pradesh, Shahpur, Himachal Pradesh, India

Published 2025-06-30

Keywords

  • digital healthcare,
  • precision medicine,
  • disease detection,
  • machine learning

How to Cite

Bisht, J., Umesh Kumar Yogi, Parveen Sadotra, Pradeep Chouksey, & Mayank Chopra. (2025). Precision Medicine: Innovations and Challenges. Milestone Transactions on Medical Technometrics, 3(2), 252–259. https://doi.org/10.5281/zenodo.15770631

Abstract

Precision medicine is an emerging approach for disease prevention and treatment that will take into account individual heterogeneity in genes, environment, and lifestyle for each person. The paper takes stock of the state of precision medicine as it is applied in different specialties, such as oncology, neurology, and managing chronic conditions. The first aim is to find major technological and methodological innovations for improved personalized treatment approaches and address ethical issues of accessibility and fairness. We conduct a large-scale literature review to explore the latest research literature focused on the use of artificial intelligence and genomic data for clinical practice. Based on the analysis conducted, the results revealed that although there has been substantial progress in utilizing these technologies to enhance patient outcomes advances, equitable access to precision medicine solutions remains a challenge. However, it highlights the necessity of further research to explore ethical architectures that will serve the equitable realization of precision medicine practices.

References

  1. Woodman, R. J., Koczwara, B., & Mangoni, A. A. (2024). Applying precision medicine principles to the management of multimorbidity: The utility of comorbidity networks, graph machine learning, and knowledge graphs. Frontiers in Medicine, 10, 1302844. https://doi.org/10.3389/fmed.2023.1302844
  2. Hahn, G., Prokopenko, D., Hecker, J., Lutz, S. M., Mullin, K., Sejour, L., Hide, W., Vlachos, I., DeSantis, S., Tanzi, R. E., et al. (2024). Prediction of disease-free survival for precision medicine using cooperative learning on multi-omic data. Briefings in Bioinformatics, 25. https://doi.org/10.1093/bib/bbae122
  3. Dhal, S., Khairari, A., Thatoi, P., Selvarathinam, A. L. X. R. A., & Rout, S. S. (2024). Economic impact of AI-driven precision medicine: Studying the economic implications of AI-powered precision medicine approaches, including how personalized treatments can influence healthcare spending, patient outcomes, and overall system efficiency. International Journal for Multidisciplinary Research.
  4. Koch, E., Pardiñas, A. F., O’Connell, K. S., Selvaggi, P., Camacho Collados, J., Babic, A., Marshall, S. E., Van der Eycken, E., Angulo, C., Lu, Y., Sullivan, P. F., Dale, A. M., Molden, E., Posthuma, D., White, N., Schubert, A., Djurovic, S., Heimer, H., Stefánsson, H., ... Andreassen, O. A. (2024). How real-world data can facilitate the development of precision medicine treatment in psychiatry. Biological Psychiatry, 96, 543–551. https://doi.org/10.1016/j.biopsych.2024.06.004
  5. Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2022). Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 14, 8459–8486. https://doi.org/10.1007/s12652-022-03997-z
  6. Fountzilas, E., Tsimberidou, A. M., Vo, H. H., & Kurzrock, R. (2022). Clinical trial design in the era of precision medicine. Genome Medicine, 14. https://doi.org/10.1186/s13073-022-01085-y
  7. Johnson, D., Del Fiol, G., Kawamoto, K., Romagnoli, K. M., Sanders, N., Isaacson, G., Jenkins, E., & Williams, M. S. (2024). Genetically guided precision medicine clinical decision support tools: A systematic review. Journal of the American Medical Informatics Association, 31, 1183–1194. https://doi.org/10.1093/jamia/ocae057
  8. Ladin, K., Cuddeback, J., Duru, O. K., Goel, S., Harvey, W., Park, J. G., Paulus, J. K., Sackey, J., Sharp, R., Steyerberg, E., et al. (2024). Guidance for unbiased predictive information for healthcare decision-making and equity (GUIDE): Considerations when race may be a prognostic factor. npj Digital Medicine, 7, 290. https://doi.org/10.1038/s41746-024-01101-w
  9. Khan, S. B., Tikotikar, A., DR, K. R., Ahmed, S. T., Albalawi, E., Qusaim, T., & Basheer, S. (2025). Telemedicine via Edge-Cloud Healthcare: A Federated Semi Supervised Learning Resource Recommendation Approach towards Building Sustainable Framework. IEEE Transactions on Consumer Electronics.
  10. Yang, X., Huang, K., Yang, D., Zhao, W., & Zhou, X. (2024). Biomedical big data technologies, applications, and challenges for precision medicine: A review. Global Challenges, 8, 2300163. https://doi.org/10.1002/gch2.202300163
  11. D'amico, S., Dall’Olio, D., Sala, C., Dall’Olio, L., Sauta, E., Zampini, M., Asti, G., Lanino, L., Maggioni, G., Campagna, A., et al. (2023). Synthetic data generation by artificial intelligence to accelerate research and precision medicine in hematology. JCO Clinical Cancer Informatics, 7, e2300021. https://doi.org/10.1200/CCI.23.00021
  12. Abbaoui, W., Retal, S., El Bhiri, B., Kharmoum, N., & Ziti, S. (2024). Towards revolutionizing precision healthcare: A systematic literature review of artificial intelligence methods in precision medicine. Informatics in Medicine Unlocked, 101475. https://doi.org/10.1016/j.imu.2024.101475
  13. Allen, B. (2024). The promise of explainable AI in digital health for precision medicine: A systematic review. Journal of Personalized Medicine, 14, 277. https://doi.org/10.3390/jpm14020277